The Annals of Applied Statistics

A Bayesian graphical modeling approach to microRNA regulatory network inference

Francesco C. Stingo, Yian A. Chen, Marina Vannucci, Marianne Barrier, and Philip E. Mirkes

Full-text: Open access

Abstract

It has been estimated that about 30% of the genes in the human genome are regulated by microRNAs (miRNAs). These are short RNA sequences that can down-regulate the levels of mRNAs or proteins in animals and plants. Genes regulated by miRNAs are called targets. Typically, methods for target prediction are based solely on sequence data and on the structure information. In this paper we propose a Bayesian graphical modeling approach that infers the miRNA regulatory network by integrating expression levels of miRNAs with their potential mRNA targets and, via the prior probability model, with their sequence/structure information. We use a directed graphical model with a particular structure adapted to our data based on biological considerations. We then achieve network inference using stochastic search methods for variable selection that allow us to explore the huge model space via MCMC. A time-dependent coefficients model is also implemented. We consider experimental data from a study on a very well-known developmental toxicant causing neural tube defects, hyperthermia. Some of the pairs of target gene and miRNA we identify seem very plausible and warrant future investigation. Our proposed method is general and can be easily applied to other types of network inference by integrating multiple data sources.

Article information

Source
Ann. Appl. Stat., Volume 4, Number 4 (2010), 2024-2048.

Dates
First available in Project Euclid: 4 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1294167808

Digital Object Identifier
doi:10.1214/10-AOAS360

Mathematical Reviews number (MathSciNet)
MR2829945

Zentralblatt MATH identifier
1220.62142

Keywords
Bayesian variable selection data integration graphical models miRNA regulatory network

Citation

Stingo, Francesco C.; Chen, Yian A.; Vannucci, Marina; Barrier, Marianne; Mirkes, Philip E. A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann. Appl. Stat. 4 (2010), no. 4, 2024--2048. doi:10.1214/10-AOAS360. https://projecteuclid.org/euclid.aoas/1294167808


Export citation

References

  • Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R. and Pasquinelli, A. E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122 553–563.
  • Betel, D., Wilson, M., Gabow, A., Marks, D. S. and Sander, C. (2008). The microRNA.org resource: Targets and expression. Nucleic Acids Research 36 D149–D153.
  • Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. J. Roy. Statist. Soc. Ser. B 60 627–641.
  • Conrad, R., Barrier, M. and Ford, L. P. (2006). Role of miRNA and miRNA processing factors in development and disease. Birth Defects Research (Part C) 78 107–117.
  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.
  • Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika 68 265–274.
  • Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander C. and Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biology 5 R1.
  • Farh, K. K. H., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P., Burge, C. B. and Bartel, D. P. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolutions. Science 310 1817–1821.
  • Finnell, R. H., Waes, J. G. V., Bennett, G. D., Barber, R. C., Wlodarczyk, B., Shaw, G. M., Lammer, E. J., Piedrahita, J. A. and Eberwine, J. H. (2000). Genetic basis of susceptibility to environmentally induced neural tube defects. Ann. New York Acad. Sci. 919 261–277.
  • George, E. I. and McCulloch, R. E. (1993). Variable Selection via Gibbs sampling. J. Amer. 85 398–409.
  • Huang, J. C., Frey, B. J. and Morris, Q. D. (2008). Comparing sequence and expression for predicting microRna targets using GenMiR3. Pacific Symposium for Biocomputing (PSB) 13 52–63.
  • Huang, J. C., Morris, Q. D. and Frey, B. J. (2007). Bayesian inference of microRNA targets from sequence and expression data. J. Comput. Biol. 14 550–563.
  • John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C. and Marks, D. S. (2004). Human MicroRNA targets. PLoS Biol. 2 e363.
  • Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nature Genetics 39 1278–1284.
  • Kiriakidou, M., Nelson, P. T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z. and Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes and Development 18 1165–1178.
  • Krek, A., Grn, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., Piedade, I. D., Gunsalus, K. C., Stoffel, M. and Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics 37 495–500.
  • Lewis, B. P., Burge, B. and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 15–20.
  • Li, S. S., Yu, S., Kao, L., Tsai, Z. Y., Singh, S., Chen B. Z., Ho, B., Liu, Y. and Yang, P. (2009). Target identification of microRNAs expressed highly in human embryonic stem cells. Journal of Cellular Biochemistry 106 1020–1030.
  • Monni, S. and Tadesse, M. G. (2009). A stochastic partitioning method to associate high-dimensional responses and covariates. Bayesian Anal. 4 413–436.
  • Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5 155–176.
  • Petersen, C. P., Bordeleau, M. E., Pelletier, J. and Sharp, P. A. (2006). Short RNAs repress translation after initiation in mammalian cells. Molecular Cell 4 533–542.
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification real-time RT-PCR. Nucleic Acid Research 29 20027.
  • Pillai, R. S., Bhattacharya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E. and Filipowicz, W. (2005). Inhibition of translational initiation by let-7 microRNA in human cells. Science 209 1573–1576.
  • Rajewsky, N. (2006). MicroRNA target predictions in animals. Nature Genetics 38 S8-13.
  • Sha, N., Vannucci, M., Tadesse, M. G., Brown, P. J., Dragoni, I., Davies, N., Roberts, T. C., Contestabile, A., Salmon, N., Buckley, C. and Falciani, F. (2004). Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60 812–819.
  • Shevde, L. A., Metge, B. J., Mitra, A., Xi, Y., Ju, J., King, J. A. and Samant, R. S. (2010). Spheroid-forming sub-population of breast cancer cells demonstrates vasculogenic mimicry via hsa-miR-299-5p regulated de novo expression of osteopontin(p). J. Cell. Mol. Med. 14 1693–1706.
  • Thermann, R. and Hentze, M. W. (2007). Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447 875–879.
  • Wang, Q., Dobra, A. and West, M. (2004). GraphExplore: A software tool for graph visualization. ISDS Discussion Paper 04-22.
  • Wei, Z. and Li, H. (2008). A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Ann. App. Statist. 2 408–429.
  • Yoon, S. and Micheli, G. D. (2006). Computational identification of microRNAs and their targets. Birth Defects Research (Part C) 78 118–128.
  • Zhang, B. and Pan, X. (2009). RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ. Health Perspect. 117 213–240.