The Annals of Applied Statistics

A general statistical framework for dissecting parent-of-origin effects underlying endosperm traits in flowering plants

Gengxin Li and Yuehua Cui

Full-text: Open access

Abstract

Genomic imprinting has been thought to play an important role in seed development in flowering plants. Seed in a flowering plant normally contains diploid embryo and triploid endosperm. Empirical studies have shown that some economically important endosperm traits are genetically controlled by imprinted genes. However, the exact number and location of the imprinted genes are largely unknown due to the lack of efficient statistical mapping methods. Here we propose a general statistical variance components framework by utilizing the natural information of sex-specific allelic sharing among sibpairs in line crosses, to map imprinted quantitative trait loci (iQTL) underlying endosperm traits. We propose a new variance components partition method considering the unique characteristic of the triploid endosperm genome, and develop a restricted maximum likelihood estimation method in an interval scan for estimating and testing genome-wide iQTL effects. Cytoplasmic maternal effect which is thought to have primary influences on yield and grain quality is also considered when testing for genomic imprinting. Extension to multiple iQTL analysis is proposed. Asymptotic distribution of the likelihood ratio test for testing the variance components under irregular conditions are studied. Both simulation study and real data analysis indicate good performance and powerfulness of the developed approach.

Article information

Source
Ann. Appl. Stat., Volume 4, Number 3 (2010), 1214-1233.

Dates
First available in Project Euclid: 18 October 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1287409370

Digital Object Identifier
doi:10.1214/09-AOAS323

Mathematical Reviews number (MathSciNet)
MR2751339

Zentralblatt MATH identifier
1202.62158

Keywords
Experimental cross genomic imprinting likelihood ratio test quantitative trait loci variance components model

Citation

Li, Gengxin; Cui, Yuehua. A general statistical framework for dissecting parent-of-origin effects underlying endosperm traits in flowering plants. Ann. Appl. Stat. 4 (2010), no. 3, 1214--1233. doi:10.1214/09-AOAS323. https://projecteuclid.org/euclid.aoas/1287409370


Export citation

References

  • Abney, M., McPeek, S. M. and Ober, C. (2000). Estimation of variance components of quantitative traits in inbred populations. Am. J. Hum. Genet. 66 629–650.
  • Amos, C. and Andrade, M. (2001). Genetic linkage methods for quantitative traits. Stat. Methods Med. Res. 10 3–25.
  • Boomsma, D. I. and Dolan, C. V. (1998). A comparison of power to detect a QTL in sib-pair data using multivariate phenotypes, mean phenotypes, and factor scores. Behav. Genet. 28 329–340.
  • Chaudhury, A. M., Koltunow, A., Payne, T., Luo, M., Tucker, M. R., Dennis, E. S. and Peacock, W. J. (2001). Control of early seed development. Ann. Rew. Cell Dev. Biol. 17 677–699.
  • Chaudhuri, S. and Messing, J. (1994). Allele-specific parental imprinting of dzrl, a post transcriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. 91 4867–4871.
  • Chernoff, H. (1954). On the distribution of the likelihood ratio. Ann. Math. Statist. 25 573–578.
  • Churchill, G. A. and Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138 963–971.
  • Cockerham, C. C. (1983). Covariances of relatives from self-fertilization. Crop. Sci. 23 1177–1180.
  • Coelho, C. M., Wu, S., Li, Y., Hunter, B., Dante, R. A., Cui, Y., Wu, R. and Larkins, B. A. (2007). Identification of quantitative trait loci that affect endoreduplication in maize endosperm. Theor. Appl. Genet. 115 1147–1162.
  • Corbeil, R. R. and Searle, S. R. (1976). A comparison of variance component estimators. Biometrics 32 779–791.
  • Cui, Y. H. (2007). A statistical framework for genome-wide scanning and testing imprinted quantitative trait loci. J. Theoret. Biol. 244 115–126.
  • Cui, Y., Cheverud, J. M. and Wu, R. (2007). A statistical model for dissecting genomic imprinting through genetic mapping. Genetica 130 227–239.
  • Cui, Y. H., Lu, Q., Cheverud, J. M., Littel, R. L. and Wu, R. L. (2006). Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 87 543–551.
  • Cui, Y. H. and Wu, R. L. (2005). A statistical model for characterizing epistatic control of triploid endosperm triggered by maternal and offspring QTL. Genet. Res. 86 65–76.
  • de Koning, D.-J., Bovenhuis, H. and van Arendonk, J. A. M. (2002). On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161 931–938.
  • Dilkes, B. P., Dante, R. A., Coelho, C. and Larkins, B. A. (2002). Genetic analysis of endoreduplication in Zea mays endosperm: Evidence of sporophytic and zygotic maternal control. Genetics 160 1163–1177.
  • Evans, D. M. (2002). The power of multivariate quantitative-trait loci linkage analysis is influenced by the correlation between the variables. Am. J. Hum. Genet. 70 1599–1602.
  • Grime, J. P. and Mowforth, M. A. (1982). Variation in genome size: An ecological interpretation. Nature 299 151–153.
  • Grossniklaus, U., Spillane, C., Page, D. R. and Koehler, C. (2001). Genomic imprinting and seed development: Endosperm formation with and without sex. Curr. Opin. Plant Biol. 4 21–27.
  • Haig, D. and Westoby, M. (1991). Genomic imprinting in endosperm: Its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos. Trans. R. Soc. Lond. 333 1–13.
  • Hanson, R. L., Kobes, S., Lindsay, R. S. and Kmowler, W. C. (2001). Assessment of parent-of-origin effects in linkage analysis of quantitative traits. Am. J. Hum. Genet. 68 951–962.
  • Harris, D. L. (1964). Genotypic covariances between inbred relatives. Genetics 50 1319–1348.
  • Jiang, C. and Zeng, Z.-B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140 1111–1127.
  • Kermicle, J. L. (1970). Dependence of the R-mottled aleurone phenotype in maize on the modes of sexual transmission. Genetics 66 69–85.
  • Kinoshita, K., Yadegari, M., Harada, J. J., Goldberg, R. B. and Fishcher, R. L. (1999). Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11 1945–1952.
  • Li, G. X. and Cui, Y. H. (2009a). A statistical variance components framework for mapping imprinted quantitative trait loci in experimental crosses. J. Probab. Statist. Article ID 689489.
  • Li, G. X. and Cui, Y. H. (2009b). On the limiting distribution of the likelihood ratio test in linkage analysis with the variance components model. Unpublished manuscript.
  • Lund, G., Messing, J. and Viotti, A. (1995). Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol. Gen. Genet. 246 716–722.
  • Lynch, M. and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA.
  • Malécot, G. (1948). Les mathématiques del’hérédité. Masson et Cie, Paris.
  • Pfeifer, K. (2000). Mechanisms of genomic imprinting. Am. J. Hum. Genet. 67 777–787.
  • Plackett, R. L. (1954). A reduction formula for normal multivariate integrals. Biometrika 41 351–360.
  • Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions J. Amer. Statist. Assoc. 82 605–610.
  • Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 72 133–144.
  • Shete, S., Zhou, X. and Amos, C. I. (2003). Genomic imprinting and linkage test for quantitative trait loci in extended pedigrees. Am. J. Hum. Genet. 73 933–938.
  • Wolf, J., Cheverud, J., Roseman, C. and Hager, R. (2008). Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genetics 4.
  • Xie, C., Gessler, D. D. G. and Xu, S. (1998). Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Genetics 149 1139–1146.
  • Xu, S. and Atchley, W. R. (1995). A random model approach to interval mapping of quantitative trait loci. Genetics 141 1189–1197.
  • Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. Genetics 136 1457–1468.

Supplemental materials

  • Supplementary material: Simulation and real data analysis. Details for simulation are included in the supplemental file. We also analyze the data with a Mendelian model. A comparison of results with both imprinting and Mendelian models is summarized in the supplemental file.