The Annals of Applied Statistics

Likelihood inference for particle location in fluorescence microscopy

John Hughes, John Fricks, and William Hancock

Full-text: Open access

Abstract

We introduce a procedure to automatically count and locate the fluorescent particles in a microscopy image. Our procedure employs an approximate likelihood estimator derived from a Poisson random field model for photon emission. Estimates of standard errors are generated for each image along with the parameter estimates, and the number of particles in the image is determined using an information criterion and likelihood ratio tests. Realistic simulations show that our procedure is robust and that it leads to accurate estimates, both of parameters and of standard errors. This approach improves on previous ad hoc least squares procedures by giving a more explicit stochastic model for certain fluorescence images and by employing a consistent framework for analysis.

Article information

Source
Ann. Appl. Stat., Volume 4, Number 2 (2010), 830-848.

Dates
First available in Project Euclid: 3 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1280842142

Digital Object Identifier
doi:10.1214/09-AOAS299

Mathematical Reviews number (MathSciNet)
MR2758423

Zentralblatt MATH identifier
1194.62108

Keywords
Maximum likelihood methods Poisson random field fluorescence microscopy particle tracking organelle molecular motor nanotechnology

Citation

Hughes, John; Fricks, John; Hancock, William. Likelihood inference for particle location in fluorescence microscopy. Ann. Appl. Stat. 4 (2010), no. 2, 830--848. doi:10.1214/09-AOAS299. https://projecteuclid.org/euclid.aoas/1280842142


Export citation

References

  • Bobroff, N. (1986). Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments 57 1152–1157.
  • Cheezum, M. K., Walker, W. F. and Guilford, W. H. (2001). Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81 2378–2388.
  • Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the variogram: I. Math. Geol. 12 115–125.
  • Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M. and Rossi, F. (2008). GNU Scientific Library Reference Manual, 1.11 ed. February.
  • Kural, C., Balci, H. and Selvin, P. R. (2005). Molecular motors one at a time: Fiona to the rescue. Journal of Physics: Condensed Matter 17 S3979–S3995.
  • Ravishanker, N. and Dey, D. K. (2002). A First Course in Linear Model Theory. Chapman & Hall/CRC, Boca Raton, FL.
  • Rost, F. W. D. (1992). Fluorescence Microscopy. Cambridge Univ. Press, Cambridge.
  • Saxton, M. J. (1997). Single-particle tracking: The distribution of diffusion coefficients. Biophysical Journal 72 1744–1753.
  • Thompson, R. E., Larson, D. R. and Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82 2775–2783.
  • Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. (2003). Myosin V walks hand-over-hand: Single flurophore imaging with 1.5-nm localization. Science 300 5628.