Annals of Applied Statistics

Model misspecification in peaks over threshold analysis

Mária Süveges and Anthony C. Davison

Full-text: Open access

Abstract

Classical peaks over threshold analysis is widely used for statistical modeling of sample extremes, and can be supplemented by a model for the sizes of clusters of exceedances. Under mild conditions a compound Poisson process model allows the estimation of the marginal distribution of threshold exceedances and of the mean cluster size, but requires the choice of a threshold and of a run parameter, K, that determines how exceedances are declustered. We extend a class of estimators of the reciprocal mean cluster size, known as the extremal index, establish consistency and asymptotic normality, and use the compound Poisson process to derive misspecification tests of model validity and of the choice of run parameter and threshold. Simulated examples and real data on temperatures and rainfall illustrate the ideas, both for estimating the extremal index in nonstandard situations and for assessing the validity of extremal models.

Article information

Source
Ann. Appl. Stat., Volume 4, Number 1 (2010), 203-221.

Dates
First available in Project Euclid: 11 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1273584453

Digital Object Identifier
doi:10.1214/09-AOAS292

Mathematical Reviews number (MathSciNet)
MR2758170

Zentralblatt MATH identifier
1189.62086

Keywords
Cluster extremal index extreme value theory likelihood model misspecification Neuchâtel temperature data Venezuelan rainfall data

Citation

Süveges, Mária; Davison, Anthony C. Model misspecification in peaks over threshold analysis. Ann. Appl. Stat. 4 (2010), no. 1, 203--221. doi:10.1214/09-AOAS292. https://projecteuclid.org/euclid.aoas/1273584453


Export citation

References

  • Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes. Wiley, Chichester.
  • Beirlant, J., Vynckier, P. and Teugels, J. L. (1996). Excess functions and estimation of the extreme-value index. Bernoulli 2 293–318.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • Benjamini, Y. and Yekutieli, D. (2001). The control of the False Discovery Rate in multiple testing under dependency. Ann. Statist. 29 1165–1188.
  • Brown, S. J., Caesar, J. and Ferro, C. A. T. (2008). Global changes in extreme daily temperature since 1950. J. Geophys. Res. 113 D05115. doi: 10.1029/2006JD008091.
  • Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  • Coles, S. G. and Pericchi, L. (2003). Anticipating catastrophes through extreme-value modelling. Appl. Statist. 52 405–416.
  • Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). J. Roy. Statist. Soc. Ser. B 52 393–442.
  • Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modeling Extremal Events for Insurance and Finance. Springer, Berlin.
  • Falk, M., Hüsler, J. and Reiss, D. (2004). Laws of Small Numbers: Extremes and Rare Events. Birkhäuser, Basel.
  • Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London.
  • Ferro, C. A. T. and Segers, J. (2003). Inference for clusters of extreme values. J. Roy. Statist. Soc. Ser. B 65 545–556.
  • Hsing, T. (1987). On the characterization of certain point processes. Stochastic Process. Appl. 26 297–316.
  • Hsing, T., Hüsler, J. and Leadbetter, M. R. (1988). On the exceedance point process for a stationary sequence. Probab. Theory Related Fields 78 97–112.
  • Kharin, V. V. and Zwiers, F. W. (2005). Estimating extremes in transient climate change simulations. Journal of Climate 18 1156–1173.
  • Larsen, M. C., Wieczorek, G. F., Eaton, L. S., Morgan, B. A. and Torres-Sierra, H. (2001). Venezuelan debris flow and flash flood disaster of 1999 studied. EOS, Transactions of the American Geophysical Union 47 572.
  • Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.
  • Nogaj, M., Yiou, P., Parey, S., Malek, F. and Naveau, P. (2006). Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys. Res. Lett. 33 L10801. doi: 10.1029/2003GL019019.
  • Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist. 3 119–131.
  • Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.
  • Smith, R. L. (1985). Maximum likelihood estimation in a class of non-regular cases. Biometrika 72 67–90.
  • Smith, R. L. (1989). Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone. Statist. Sci. 4 367–377.
  • Smith, R. L. (1992). The extremal index for a Markov chain. J. Appl. Probab. 29 37–45.
  • Sousa, B. and Michailidis, G. (2004). A diagnostic plot for estimating the tail index of a distribution. J. Comput. Graph. Statist. 13 974–995.
  • Süveges, M. (2007). Likelihood estimation of the extremal index. Extremes 10 41–55.
  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50 1–25.
  • White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge Univ. Press, Cambridge.