The Annals of Applied Statistics

Inference for the dark energy equation of state using Type IA supernova data

Christopher Genovese, Peter Freeman, Larry Wasserman, Robert Nichol, and Christopher Miller

Full-text: Open access


The surprising discovery of an accelerating universe led cosmologists to posit the existence of “dark energy”—a mysterious energy field that permeates the universe. Understanding dark energy has become the central problem of modern cosmology. After describing the scientific background in depth, we formulate the task as a nonlinear inverse problem that expresses the comoving distance function in terms of the dark-energy equation of state. We present two classes of methods for making sharp statistical inferences about the equation of state from observations of Type Ia Supernovae (SNe). First, we derive a technique for testing hypotheses about the equation of state that requires no assumptions about its form and can distinguish among competing theories. Second, we present a framework for computing parametric and nonparametric estimators of the equation of state, with an associated assessment of uncertainty. Using our approach, we evaluate the strength of statistical evidence for various competing models of dark energy. Consistent with current studies, we find that with the available Type Ia SNe data, it is not possible to distinguish statistically among popular dark-energy models, and that, in particular, there is no support in the data for rejecting a cosmological constant. With much more supernova data likely to be available in coming years (e.g., from the DOE/NASA Joint Dark Energy Mission), we address the more interesting question of whether future data sets will have sufficient resolution to distinguish among competing theories.

Article information

Ann. Appl. Stat., Volume 3, Number 1 (2009), 144-178.

First available in Project Euclid: 16 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Dark energy nonlinear inverse problems nonparametric inference


Genovese, Christopher; Freeman, Peter; Wasserman, Larry; Nichol, Robert; Miller, Christopher. Inference for the dark energy equation of state using Type IA supernova data. Ann. Appl. Stat. 3 (2009), no. 1, 144--178. doi:10.1214/08-AOAS229.

Export citation


  • Albrecht, A., Bernstein, G., Cahn, R., Freedman, W. L., Hewitt, J., Hu, W., Huth, J., Kamionkowski, M., Kolb, E. W., Knox, L., Mather, J. C., Staggs, S. and Suntzeff, N. B. (2006). Report of the dark energy task force. ArXiv Astrophysics e-prints.
  • Baraud, Y. (2004). Confidence balls in Gaussian regression. Ann. Statist. 32 528–551.
  • Barboza, E. M. and Alcaniz, J. S. (2008). A parametric model for dark energy. Phys. Lett. B 666 415–419.
  • Boughn, S. and Crittenden, R. (2004). A correlation of the cosmic microwave sky with large scale structure. Nature 427 45.
  • Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univ. Press.
  • Bucher, M. and Spergel, D. (1999). Is the dark matter a solid? Phys. Rev. D 60 043505.
  • Caldwell, R. and Linder, E. (2005). The limits of quintessence. Phys. Rev. Lett. 95 141301.
  • Caldwell, R. R., Kamionkowski, M. and Weinberg, N. (2003). Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91 071301.
  • Carroll, S. (2001). Dark energy and the preposterous universe. Available at arXiv:astro-ph/0107571.
  • Carroll, S. (2003). Why is the universe accelerating? Available at arXiv:astro-ph/0310342.
  • Carroll, S., Hoffman, M. and Trodden, M. (2003). Can the dark energy equation-of-state parameter w be less than −1? Phys. Rev. D 68 023509.
  • Chevallier, M. and Polarski, D. (2001). Accelerating universes with scaling dark matter. Internat. J. Modern Phys. D 10 213–223.
  • Daly, R. A., Djorgovski, S. G., Freeman, K. A., Mory, M. P., O’Dea, C. P., Kharb, P. and Baum, S. (2008). Improved constraints on the acceleration history of the universe and the properties of the dark energy. Ap. J. 677 1–11.
  • Davies, P. L., Kovac, A. and Meise, M. (2007). Nonparametric regression, confidence regions and regularization. Available at arXiv:astro-ph/07110690.
  • Davis, T. M., Mortsell, E., Sollerman, J., Becker, A. C., Blondin, S., Challis, P., Clocchiatti, A., Filippenko, A. V., Foley, R. J., Garnavich, P. M., Jha, S., Krisciunas, K., Kirshner, R. P., Leibundgut, B., Li, W., Matheson, T., Miknaitis, G., Pignata, G., Rest, A., Riess, A. G., Schmidt, B. P., Smith, R. C., Spyromilio, J., Stubbs, C. W., Suntzeff, N. B., Tonry, J. L. and Wood-Vasey, W. M. (2007). Scrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes. Available at arXiv:astro-ph/0701510.
  • de Boor, C. (2001). A Practical Guide to Splines. Springer, New York.
  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1–26.
  • Efron, B. and Tibshirani, R. (1994). An Introduction to the Bootstrap. Chapman & Hall, New York.
  • Fosalba, P., Gaztanaga, E. and Castander, F. (2003). Detection of the isw and sz effects from the cmb-galaxy correlation. Astrophys. J. 597 L89.
  • Freese, K. and Lewis, M. (2002). Cardassian expansion: A model in which the universe is flat matter dominated, and accelerating. Phys. Let. B 540 1.
  • Frieman, J. A., Turner, M. S. and Huterer, D. (2008). Dark energy and the accelerating universe. Annu. Rev. Astron. Astr. 46 385–432.
  • Gamow, G. (1970). My World Line: An Informal Autobiography. Viking Press, New York.
  • Genovese, C., Freeman, P., Wasserman, L., Nichol, R. and Miller, C. (2009). Supplement to “Inference for the dark energy equation of state using type ia supernova data.” DOI: 10.1214/08-AOAS229SUPP.
  • Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23 347–356.
  • Hogg, D. (2000). Distance measures in cosmology. Available at arXiv:astro-ph/9905116v4.
  • Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15 168–173.
  • Huterer, D. and Cooray, A. (2005). Uncorrelated estimates of dark energy evolution. Phys. Rev. D 71 023506.
  • Huterer, D. and Linder, E. (2007). Separating dark physics from physical darkness: Minimalist modified gravity vs. dark energy. Phys. Rev. D 75 3519.
  • Huterer, D. and Starkman, G. (2003). Parameterization of dark-energy properties: A principal-component approach. Phys. Rev. Lett. 90 031301.
  • Huterer, D. and Turner, M. (1999). Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D 60 081301.
  • Huterer, D. and Turner, M. S. (2001). Constraining the properties of dark energy. Available at arXiv:astro-ph/0103175.
  • Ingster, Y. and Suslina, I. (2006). Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Springer, New York.
  • Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001–1008.
  • Linder, E. V. (2003). Exploring the expansion history of the universe. Phys. Rev. Lett. 90 091301.
  • Linder, E. V. and Huterer, D. (2005). How many dark energy parameters? Phys. Rev. D 72 043509.
  • Liu, D.-J., Li, X.-Z., Hao, J. and Jin, X.-H. (2008). Revisiting the parametrization of equation of state of dark energy via SNIa data. Mon. Not. R. Astron. Soc. 388 275–281.
  • Nolta, M. R., Wright, E. L., Page, L., Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Spergel, D. N., Tucker, G. S. and Wollack, E. (2004). First year wilkinson microwave anisotropy probe (wmap) observations: Dark energy induced correlation with radio sources. Astrophys. J. 608 10.
  • Peacock, J. (1999). Cosmological Physics. Cambridge Univ. Press.
  • Perlmutter, S., Aldering, G., Valle, M. D., Deustua, S., Ellis, R., Fabbro, S., Fruchter, A., Goldhaber, G., Goobar, A., Groom, D., Hook, I. M., Kim, A., Kim, M., Knop, R., Lidman, C., McMahon, R. G., Nugent, P., Pain, R., Panagia, N., Pennypacker, C., Ruiz-Lapuente, P., Schaefer, B. and Walton, N. (1998). Discovery of a supernova explosion at half the age of the universe and its cosmological implications. Nature 391 51.
  • Phillips, M. M. (1993). The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 413 L105–L108.
  • Riess, A. G., Filippenko, A. V., Challis, P., Clocchiattia, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B. and Tonry, J. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116 1009.
  • Riess, A. G., Strolger, L.-G., Casertano, S., Ferguson, H. C., Mobasher, B., Gold, B., Challis, P. J., Filippenko, A. V., Jha, S., Li, W., Tonry, J., Foley, R., Kirshner, R. P., Dickinson, M., MacDonald, E., Eisenstein, D., Livio, M., Younger, J., Xu, C., Dahlen, T. and Stern, D. (2006). New hubble space telescope discoveries of type ia supernovae at z > 1: Narrowing constraints on the early behavior of dark energy. Available at arXiv:astro-ph/0611572.
  • Saini, T. D., Weller, J. and Bridle, S. L. (2004). Revealing the nature of dark energy using Bayesian evidence. Mon. Not. R. Astron. Soc. 348 603–608.
  • Sarkar, D., Sullivan, S., Joudaki, S., Amblard, A., Holz, D. E. and Cooray, A. (2008). Beyond two dark energy parameters. Physical Review Letters 100 241302.
  • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464.
  • Scranton, R., Connolly, A. J., Nichol, R. C., Stebbins, A., Szapudi, I., Eisenstein, D. J., Afshordi, N., Budavari, T., Csabai, I., Frieman, J. A., Gunn, J. E., Johnson, D., Loh, Y., Lupton, R. H., Miller, C. J., Sheldon, E. S., Sheth, R. S., Szalay, A. S., Tegmark, M. and Xu, Y. (2003). Physical evidence for dark energy. Available at arXiv:astro-ph/0307335.
  • Shapiro, C. and Turner, M. (2006). What do we really know about cosmic acceleration? Astrophys. J. 649 563.
  • Slipher, V. M. (1917). Nebulae. Proc. Amer. Philos. Soc. 56 403–409.
  • Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., de Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R. and Wilkinson, D. T. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396 L1–L5.
  • Steinhardt, P., Wang, L. and Zlatev, I. (1999). Cosmological tracking solutions. Phys. Rev. D 59 123504.
  • Wang, Y. (2008). Figure of merit for dark energy constraints from current observational data. Phys. Rev. D 77 123525.
  • Wang, Y. and Mukherjee, P. (2004). Model-independent constraints on dark energy density from flux-averaging analysis of type ia supernova data. Astrophys. J. 606 654–663.
  • Weinberg, S. (1989). The cosmological constant problem. Rev. Mod. Phys. 61 1–23.
  • Weinberg, S. (2000). The cosmological constant problems. Available at arXiv:astro-ph/0005265v1.
  • Wood-Vasey, W. M., Miknaitis, G., Stubbs, C. W., Jha, S., Riess, A. G., Garnavich, P. M., Kirshner, R. P., Aguilera, C., Becker, A. C., Blackman, J. W., Blondin, S., Challis, P., Clocchiatti, A., Conley, A., Covarrubias, R., Davis, T. M., Filippenko, A. V., Foley, R. J., Garg, A., Hicken, M., Krisciunas, K., Leibundgut, B., Li, W., Matheson, T., Miceli, A., Narayan, G., Pignata, G., Prieto, J. L., Rest, A., Salvo, M. E., Schmidt, B. P., Smith, R. C., Sollerman, J., Spyromilio, J., Tonry, J. L., Suntzeff, N. B. and Zenteno, A. (2007). Observational constraints on the nature of the dark energy: First cosmological results from the ESSENCE supernova survey 694–715. Available at arXiv:astro-ph/0701041.
  • Zlatev, I., Wang, L. and Steinhardt, P. (1999). Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82 896.

Supplemental materials