The Annals of Applied Statistics

Interpolating fields of carbon monoxide data using a hybrid statistical-physical model

Anders Malmberg, Avelino Arellano, David P. Edwards, Natasha Flyer, Doug Nychka, and Christopher Wikle

Full-text: Open access

Abstract

Atmospheric Carbon Monoxide (CO) provides a window on the chemistry of the atmosphere since it is one of few chemical constituents that can be remotely sensed, and it can be used to determine budgets of other greenhouse gases such as ozone and OH radicals. Remote sensing platforms in geostationary Earth orbit will soon provide regional observations of CO at several vertical layers with high spatial and temporal resolution. However, cloudy locations cannot be observed and estimates of the complete CO concentration fields have to be estimated based on the cloud-free observations. The current state-of-the-art solution of this interpolation problem is to combine cloud-free observations with prior information, computed by a deterministic physical model, which might introduce uncertainties that do not derive from data. While sharing features with the physical model, this paper suggests a Bayesian hierarchical model to estimate the complete CO concentration fields. The paper also provides a direct comparison to state-of-the-art methods. To our knowledge, such a model and comparison have not been considered before.

Article information

Source
Ann. Appl. Stat., Volume 2, Number 4 (2008), 1231-1248.

Dates
First available in Project Euclid: 8 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1231424208

Digital Object Identifier
doi:10.1214/08-AOAS168

Mathematical Reviews number (MathSciNet)
MR2655657

Zentralblatt MATH identifier
1168.62396

Keywords
Carbon monoxide satellite data Bayesian hierarchical models interpolation data assimilation

Citation

Malmberg, Anders; Arellano, Avelino; Edwards, David P.; Flyer, Natasha; Nychka, Doug; Wikle, Christopher. Interpolating fields of carbon monoxide data using a hybrid statistical-physical model. Ann. Appl. Stat. 2 (2008), no. 4, 1231--1248. doi:10.1214/08-AOAS168. https://projecteuclid.org/euclid.aoas/1231424208


Export citation

References

  • Arellano, A. F. et al. (2007). Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission. Atmos. Chem. Phys. 7 5695–5710.
  • Banerjee, S., Gelfand, A. E. and Carlin, B. P. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, Boca Raton, FL.
  • Barrie, L. A., Borrell, P. and Langen, J., eds. (2004). The changing atmosphere, an integrated global atmospheric chemistry observation (IGACO) theme for the IGOS partnership global atmospheric watch Report 159 (World Meteorological TD No. 1235). European Space Agency, Noordwijk, The Netherlands.
  • Berliner, L. M. (1996). Hierarchical Bayesian time series models. In Maximum Entropy and Bayesian Methods (Santa Fe, NM, 1995) 79 15–22. Kluwer Acad. Publ., Dordrecht.
  • Chai T. et al. (2006). Chemical data assimilation of transport and chemical evolution over the Pacific (TRACE-P) aircraft measurements. J. Geophys. Res. 111 D02301. DOI: 10.1029/2005JD005883.
  • Cicerone, R. J. (1988). How has the atmospheric concentration of CO changed? In The Changing Atmosphere (F. S. Rowland and I. S. A. Isaksen, eds.) 49–61. Wiley, New York.
  • Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L. and Briegleb, B. P. (2006). The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Climate 19 2144–2161.
  • Cressie, N. (1993). Statistics for Spatial Data, rev. ed. Wiley, New York.
  • Deeter, M. N. et al. (2004). Vertical resolution and information content of CO profiles retrieved by MOPITT. Geophys. Res. Lett. 31 L15112. DOI: 10.1029/2004GL020235.
  • Eben, K. et al. (2005). An ensemble Kalman filter for short-term forecasting of tropospheric ozone concentrations. Q. J. R. Meteorol. Soc. 131 3313–3322.
  • Edwards, D. P. et al. (2004). Observations of carbon monoxide and aerosol from the terra satellite: Northern hemisphere variability. J. Geophys. Res. 109 D24202. DOI: 10.1029/2004JD0047272004.
  • Edwards, D. P. (2006). Air quality remote sensing from space. EOS Transactions AGU 87 327.
  • Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C. and Eder, B. (2005). Fully coupled online chemistry within the WRF model. Atmospheric Environment 39 6957–6975.
  • Haberman, R. (1987). Elementary Applied Partial Differential Equations, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.
  • Hanea, R. G., Velders, G. J. M. and Heemink, A. (2004). Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport model. J. Geophys. Res. 109 D10302. DOI: 10.1029/2003JD004283.
  • Hotlon, J. R. (2004). An Introduction to Dynamic Meteorology. North-Holland, Amsterdam.
  • Kalman, R. E. and Bucy, R. S. (1961). New results in linear filtering and prediction theory. Trans. ASME Ser. D—J. Basic Engrg. 83 95–108.
  • Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press.
  • Khare, S. P., Anderson, J. L., Hoar, T. J. and Nychka, D. (2008). An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems. Tellus A. To appear.
  • Lamarque, J.-F. et al. (2004). Application of a bias estimator for the improved assimilation of Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals. J. Geophys. Res. 109 D16304. DOI: 10.1029/2003JD004466.
  • Lary, D. J. (1999). Data assimilation: A powerful tool for atmospheric chemistry. Phil. Trans. R. Soc. Ser. A. Math. Phys. 357 3445–3457.
  • Malmberg, A., Arellano, A., Edwards, D. P., Flyer, N., Nychka, D. and Wikle, C. (2008). Supplement to “Interpolating fields of carbon monoxide data using a hybrid statistical-physical model.” DOI: 10.1214/08-AOAS168SUPP.
  • Pan, L., Gille, J. C., Edwards, D. P. and Bailey, P. L. (1998). Retrieval of tropospheric carbon monoxide for the MOPITT experiment. J. Geophysical Research 103 32,277–32,290.
  • Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer, New York.
  • Sandu, A. et al. (2005). Ensemble-based data assimilation for atmospheric chemical transport models. Lecture Notes in Comput. Sci. 3515 648–655. Springer, Berlin.
  • Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and Its Applications. Springer, New York.
  • Wikle, C. K., Milliff, R. F., Nychka, D. and Berliner, L. M. (2001). Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds. J. Amer. Statist. Assoc. 96 382–397.
  • Wikle, C. K. (2003). Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84 1382–1394.
  • Wikle, C. K., Berliner, L. M. and Milliff, R. F. (2003). Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions. Monthly Weather Review 131 1051–1062.

Supplemental materials