The Annals of Applied Statistics

Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data

Montserrat Fuentes, Brian Reich, and Gyuwon Lee

Full-text: Open access

Abstract

Gridded estimated rainfall intensity values at very high spatial and temporal resolution levels are needed as main inputs for weather prediction models to obtain accurate precipitation forecasts, and to verify the performance of precipitation forecast models. These gridded rainfall fields are also the main driver for hydrological models that forecast flash floods, and they are essential for disaster prediction associated with heavy rain. Rainfall information can be obtained from rain gages that provide relatively accurate estimates of the actual rainfall values at point-referenced locations, but they do not characterize well enough the spatial and temporal structure of the rainfall fields. Doppler radar data offer better spatial and temporal coverage, but Doppler radar measures effective radar reflectivity (Ze) rather than rainfall rate (R). Thus, rainfall estimates from radar data suffer from various uncertainties due to their measuring principle and the conversion from Ze to R. We introduce a framework to combine radar reflectivity and gage data, by writing the different sources of rainfall information in terms of an underlying unobservable spatial temporal process with the true rainfall values. We use spatial logistic regression to model the probability of rain for both sources of data in terms of the latent true rainfall process. We characterize the different sources of bias and error in the gage and radar data and we estimate the true rainfall intensity with its posterior predictive distribution, conditioning on the observed data. Our model allows for nonstationary and asymmetry in the spatio-temporal dependency structure of the rainfall process, and allows the temporal evolution of the rainfall process to depend on the motions of rain fields, and the spatial correlation to depend on geographic features. We apply our methods to estimate rainfall intensity every 10 minutes, in a subdomain over South Korea with a spatial resolution of 1 km by 1 km.

Article information

Source
Ann. Appl. Stat., Volume 2, Number 4 (2008), 1148-1169.

Dates
First available in Project Euclid: 8 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1231424204

Digital Object Identifier
doi:10.1214/08-AOAS166

Mathematical Reviews number (MathSciNet)
MR2655653

Zentralblatt MATH identifier
1168.62103

Keywords
Conditionally autoregressive models full symmetry nonstationarity rainfall modelling spatial logistic regression spatial–temporal models

Citation

Fuentes, Montserrat; Reich, Brian; Lee, Gyuwon. Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data. Ann. Appl. Stat. 2 (2008), no. 4, 1148--1169. doi:10.1214/08-AOAS166. https://projecteuclid.org/euclid.aoas/1231424204


Export citation

References

  • Bellon, A., Lee, G. W., Kilambi, A. and Zawadzki, I. (2006). Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteorology Climatology 46 726–741.
  • Chumchean, S., Seed, A. and Sharma, A. (2004). Application of scaling in radar reflectivity for correcting range-dependent bias in climatological radar rainfall estimates. J. Atmospheric Oceanic Technology 21 1545–1556.
  • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 377–403.
  • Fuentes, M. (2002). Periodogram and other spectral methods for nonstationary spatial processes. Biometrika 89 197–210.
  • Gelfand, A. E., Banerjee, S. and Gamerman, D. (2005). Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16 465–479.
  • Germann, U., Galli, G., Boscacci, M. and Bolliger, M. (2006). Radar precipitation measurement in a mountainous region. Quarterly J. Roy. Meteorology Society 132 1669–1692.
  • Germann, U. and Zawadzki, I. (2002). Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly Weather Review 130 2859–2873.
  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer. Statist. Assoc. 97 590–600.
  • Green, J. R. (1964). A model for rainfall occurrence. J. Roy. Statist. Soc. Ser. B 26 345–353.
  • Higdon, D., Swall, J. and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6 (J. M. Bernardo et al., eds.) 761–768. Oxford Univ. Press.
  • Hughes, J. P. and Guttorp, P. (1994). Incorporating spatial dependence and atmospheric data in a model of precipitation. American Meteorological Society 33 1503–1515.
  • Jordan, P. W., Seed, A. W. and Austin, G. L. (2000). Sampling errors in radar estimates rainfall. J. Geophysical Research 105 2247–2257.
  • Joss, J. and Waldvogel, A. (1990). Precipitation measurement and hydrology. Radar in Meteorology. In American Meteorological Society (D. Atlas, ed.) 577–606.
  • Lee, G. W. and Zawadzki, I. (2005). Variability of drop size distributions: Time scale dependence of the variability and its effects on rain estimation. J. Appl. Meteorology 44 241–255.
  • Lee, G. W., Seed, A. W. and Zawadzki, I. (2007). Modeling the variability of drop size distributions in space and time. J. Appl. Meteorology and Climatology 46 742–756.
  • Lu, N. and Zimmerman, D. L. (2005). Testing for directional symmetry in spatial dependence using the periodogram. J. Statist. Plann. Inference 129 369–385.
  • Nychka, D., Wikle, C. K. and Royle, J. A. (2002). Multiresolution models for nonstationary spatial covariance functions. Stat. Modell. 2 315–331.
  • Park, M. S. and Fuentes, M. (2008). Testing lack of symmetry in spatial–temporal processes. J. Statist. Plann. Inference. To appear.
  • R Development Core Team (2006). R: A language and environment for statistical computing. Available at http://www.R-project.org.
  • Sanso, B. and Guenni, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist. Assoc. 95 1089–1100.
  • Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108–119.
  • Scaccia, L. and Martin, R. J. (2005). Testing axial symmetry in separability in lattice processes. J. Statist. Plann. Inference 131 19–39.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). J. Roy. Statist. Soc. Ser. B 64 583–639.
  • Stein, M. L. (2005). Space–time covariance functions. J. Amer. Statist. Assoc. 100 310–321.
  • Wang, J., Fisher, B. L. and Wolf, D. B. (2008). Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmospheric and Oceanic Technology. To appear.
  • Zawadzki, I. (1984). Factors affecting the precision of radar measurements of rain. In 22nd Conference on Radar Meteorology, Zurich. American Meteorological Society 251–256.
  • Zhang, Z. and Switzer, P. (2007). Stochastic space–time regional rainfall modeling adapted to historical rain gauge data. Water Resources Research 43 W03441. DOI:10.1029/2005WR004654.