The Annals of Applied Statistics

False discovery rate analysis of brain diffusion direction maps

Armin Schwartzman, Robert F. Dougherty, and Jonathan E. Taylor

Full-text: Open access

Abstract

Diffusion tensor imaging (DTI) is a novel modality of magnetic resonance imaging that allows noninvasive mapping of the brain’s white matter. A particular map derived from DTI measurements is a map of water principal diffusion directions, which are proxies for neural fiber directions. We consider a study in which diffusion direction maps were acquired for two groups of subjects. The objective of the analysis is to find regions of the brain in which the corresponding diffusion directions differ between the groups. This is attained by first computing a test statistic for the difference in direction at every brain location using a Watson model for directional data. Interesting locations are subsequently selected with control of the false discovery rate. More accurate modeling of the null distribution is obtained using an empirical null density based on the empirical distribution of the test statistics across the brain. Further, substantial improvements in power are achieved by local spatial averaging of the test statistic map. Although the focus is on one particular study and imaging technology, the proposed inference methods can be applied to other large scale simultaneous hypothesis testing problems with a continuous underlying spatial structure.

Article information

Source
Ann. Appl. Stat. Volume 2, Number 1 (2008), 153-175.

Dates
First available in Project Euclid: 24 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1206367816

Digital Object Identifier
doi:10.1214/07-AOAS133

Mathematical Reviews number (MathSciNet)
MR2415598

Zentralblatt MATH identifier
1137.62033

Keywords
Diffusion tensor imaging directional statistics multiple testing empirical null spatial smoothing

Citation

Schwartzman, Armin; Dougherty, Robert F.; Taylor, Jonathan E. False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2 (2008), no. 1, 153--175. doi:10.1214/07-AOAS133. https://projecteuclid.org/euclid.aoas/1206367816.


Export citation

References

  • Abramowitz, M. and Stegun, I. A. (1972)., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. Dover, New York.
  • Bammer, R., Augustin, M., Strasser-Fuchs, S., Seifert, T., Kapeller, P., Stollberger, R., Ebner, F., Hartung, H. P. and Fazekas, F. (2000). Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis., Magnetic Resonance in Medicine 44 583–591.
  • Bammer, R., Auer, M., Keeling, S. L., Moseley, M. E. and Fazekas, F. (2002). Diffusion tensor imaging using single-shot SENSE-EPI., Magnetic Resonance in Medicine 48 128–136.
  • Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI., J. Magnetic Resonance Ser. B 111 209–219.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing., J. Roy. Statist. Soc. Ser. B 57 289–300.
  • Best, D. J. and Fisher, N. I. (1986). Goodness-of-fit and discordancy tests for samples from the Watson distribution on the sphere., Australian J. Statist. 28 13–31.
  • Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D. E. and Wandell, B. (2005). Correlations between white matter microstructure and reading performance in children., Cortex 41 354–363.
  • Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment., J. Amer. Statist. Assoc. 96 1151–1160.
  • Efron, B. (2004) Large-scale simultaneous hypothesis testing: The choice of a null hypothesis., J. Amer. Statist. Assoc. 99 96–104.
  • Genovese, C. R., Lazar, N. A. and Nichols, T. E. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate., Neuroimage 15 870–878.
  • Kotz, S. and Adams, J. W. (1964). Distribution of sum of identically distributed exponentially correlated gamma-variables., Ann. Math. Statist. 35 277–283.
  • Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E. and Poldrack, R. A. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging., Neuron 25 493–500.
  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N. and Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications., J. Magnetic Resonance Imaging 13 534–546.
  • Mardia, K. V. and Jupp, P. E. (2000)., Directional Statistics. Wiley, Chichester.
  • Pacifico, M. P., Genovese, C., Verdinelli, I. and Wasserman, L. (2004). False discovery control for random fields., J. Amer. Statist. Assoc. 99 1002–1014.
  • Scheffé, H. (1970). Practical solutions of the Behrens–Fisher problem., J. Amer. Statist. Assoc. 65 1501–1508.
  • Schwartzman, A., Dougherty, R. F. and Taylor, J. E. (2005). Cross-subject comparison of principal diffusion direction maps., Magnetic Resonance in Medicine 53 1423–1431.
  • Schwartzman, A. (2006). Random ellipsoids and false discovery rates: Statistics for diffusion tensor imaging data. Ph.D. dissertation, Dept. Statistics, Stanford, Univ.
  • Storey, J. D., Taylor, J. E. and Siegmund, D. O. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach., J. Roy. Statist. Soc. Ser. B 66 187–205.
  • Watson, G. S. (1965). Equatorial distributions on a sphere., Biometrika 52 193–201.
  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J. and Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation., Human Brain Mapping 4 58–73.