The Annals of Applied Probability

Optimal Portfolio in Partially Observed Stochastic Volatility Models

Huy\^en Pham and Marie-Claire Quenez

Full-text: Open access

Abstract

We address the maximization problem of expected utility from terminal wealth. The special feature of this paper is that we consider a financial market where price process of risky assets follows a stochastic volatility model and we require that investors observe just the vector of stock prices. Using stochastic filtering techniques and adapting martingale duality methods in this partially observed incomplete model, we characterize the value function and the optimal portfolio policies. We study in detail the Bayesian case, when risk premia of the stochastic volatility model are unobservable random variables with known prior distribution. We also consider the case of unobservable risk premia modelled by linear Gaussian processes.

Article information

Source
Ann. Appl. Probab., Volume 11, Number 1 (2001), 210-238.

Dates
First available in Project Euclid: 27 August 2001

Permanent link to this document
https://projecteuclid.org/euclid.aoap/998926991

Digital Object Identifier
doi:10.1214/aoap/998926991

Mathematical Reviews number (MathSciNet)
MR1825464

Zentralblatt MATH identifier
1043.91032

Subjects
Primary: 93E20: Optimal stochastic control 93E11: Filtering [See also 60G35] 90A09

Keywords
stochastic volatility filtering utility maximization dynamic programming Bayesian control Kalman-Bucy filter

Citation

Pham, Huy\^en; Quenez, Marie-Claire. Optimal Portfolio in Partially Observed Stochastic Volatility Models. Ann. Appl. Probab. 11 (2001), no. 1, 210--238. doi:10.1214/aoap/998926991. https://projecteuclid.org/euclid.aoap/998926991


Export citation

References

  • Cox, J. and Huang, C. F. (1989). Optimal consumption and portfolio policies when asset process follow a diffusion process. J. Econom. Theory 49 33-83.
  • Cvitani´c, J. (1997). Optimal trading under constraints. Financial Mathematics. Lecture Notes in Math. 1656, Springer, Berlin.
  • Cvitani´c, J. and Karatzas, I. (1992). Convex Duality in Convex Portfolio Optimization. Ann. Appl. Probab. 2 767-818.
  • Cvitani´c, J. and Karatzas, I. (1993). Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3 652-681.
  • Detemple, J. (1986). Asset pricing in a production economy with incomplete information. J. Finance 41 383-391.
  • Dothan, M. U. and Feldman, D. (1986). Equilibrium interest rates and multiperiod bonds in a partially observable economy. J. Finance 41 369-382.
  • El Karoui, N. and Quenez, M. C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29-66.
  • Frey, R. and Runggaldier, W. (1999). Risk-minimizing hedging strategies under restricted information: the case of stochastic volatility models observable only at discrete random times. Preprint.
  • Gennotte, G. (1986). Optimal portfolio choice under incomplete information. J. Finance 41 733-746.
  • He, H. and Pearson, N. (1991). Consumption and portfolio policies with incomplete markets and short-selling constraints: the infinite-dimensional case. J. Econom. Theory 54 259-304.
  • Karatzas, I., Lehoczky, J. P. and Shreve, S. (1987). Optimal portfolio and consumption decisions for a small investor on a finite horizon. SIAM J. Control Optim. 25 1557-1586.
  • Karatzas, I., Lehoczky, J. P., Shreve, S. and Xu, G. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29 702-730.
  • Karatzas, I., Ocone, D. and Li, J. (1991). An extension of Clark's formula. Stochastics Stochastic Rep. 37 127-131.
  • Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Springer, New York.
  • Karatzas, I. and Xue, X. (1991). A note on utility maximization under partial observations. Math. Finance 1 57-70.
  • Karatzas, I. and Zhao, X. (1998). Bayesian adaptive portfolio optimization. Columbia Univ. Preprint.
  • Kramkov, D. and Schachermayer, W. (1999). The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904-950.
  • Kuwana, Y. (1995). Certainty equivalence and logarithmic utilities in consumption/investment problems. Math. Finance 5 297-310.
  • Lakner, P. (1995). Utility maximization with partial information. Stochastic Process. App. 56 247-273.
  • Lakner, P. (1998). Optimal trading strategy for an investor: the case of partial information. Stochastic Process. Appl. 76 77-97.
  • Lasry, J. M. and Lions, P. L. (1999). Stochastic control under partial information and applications to finance. Preprint.
  • Liptser, R. and Shiryaev, A. (1977). Statistics of Random Processes 1. Springer, New York.
  • Merton R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory 3 373-413.
  • Ocone, D. and Karatzas, I. (1991). A generalized Clark representation formula with application to optimal portfolios. Stochastics Stochastics Rep. 34 187-220.
  • Pardoux, E. (1989). Filtrage non lin´eaire et ´equations aux d´eriv´ees partielles stochastiques associ´ees. Lecture Notes in Math. 1464 67-163. Springer, Berlin.
  • Protter, P. (1990). Stochastic Integration and Differential Equations. Springer, New York.
  • Stricker, C. (1983). Quelques remarques sur les semi-martingales gaussiennes et le probl eme de l'innovation. Lecture Notes in Control and Inform. Sci. 61 260-276. Springer, Berlin.