The Annals of Applied Probability

Heavy Traffic Limits for Some Queueing Networks

Maury Bramson and J.G. Dai

Full-text: Open access

Abstract

Using a slight modification of the framework of Bramson [7] and Williams [54], we prove heavy traffic limit theorems for six families of multiclass queueing networks. The first three families are single-station systems operating under first-in-first-out (FIFO), generalized-head-of-the-line proportional processor sharing (GHLPPS) and static buffer priority (SBP) service disciplines. The next two families are reentrant lines that operate under first-buffer-first-serve (FBFS) and last-buffer-first-serve (LBFS) service disciplines; the last family consists of certain two-station, five-class networks operating under an SBP service discipline. Some of these heavy traffic limits have appeared earlier in the literature; our new proofs demonstrate the significant simplifications that can be achieved in the present setting.

Article information

Source
Ann. Appl. Probab. Volume 11, Number 1 (2001), 49-90.

Dates
First available in Project Euclid: 27 August 2001

Permanent link to this document
https://projecteuclid.org/euclid.aoap/998926987

Digital Object Identifier
doi:10.1214/aoap/998926987

Mathematical Reviews number (MathSciNet)
MR1825460

Zentralblatt MATH identifier
1016.60084

Subjects
Primary: 60K25: Queueing theory [See also 68M20, 90B22] 60F17: Functional limit theorems; invariance principles 60G17: Sample path properties
Secondary: 60J15 90B22: Queues and service [See also 60K25, 68M20] 68M20: Performance evaluation; queueing; scheduling [See also 60K25, 90Bxx]

Keywords
multiclass queueing network Brownian model heavy traffic reflecting Brownian motion diffusion approximation

Citation

Bramson, Maury; Dai, J.G. Heavy Traffic Limits for Some Queueing Networks. Ann. Appl. Probab. 11 (2001), no. 1, 49--90. doi:10.1214/aoap/998926987. https://projecteuclid.org/euclid.aoap/998926987.


Export citation

References

  • [1] Baskett, F., Chandy, K. M., Muntz, R. R. and Palacios, F. G. (1975). Open, closed and mixed networks of queues with different classes of customers. J. Assoc. Comput. Mach. 22 248-260.
  • [2] Bertsekas, D. and Gallager, R. (1992). Data Networks. Prentice-Hall, Englewood Cliffs, NJ.
  • [3] Borovkov, A. (1964). Some limit theorems in the theory of mass service, I. Theory Probab. Appl. 9 550-565.
  • [4] Borovkov, A. (1965). Some limit theorems in the theory of mass service, II. Theory Probab. Appl. 10 375-400.
  • [5] Bramson, M. (1997). Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks. Queueing Systems Theory Appl. 23 1-26.
  • [6] Bramson, M. (1998). Stability of two families of queueing networks and a discussion of fluid limits. Queueing Systems Theory Appl. 28 7-31.
  • [7] Bramson, M. (1998). State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Systems Theory Appl. 30 89-148.
  • [8] Chen, H. and Mandelbaum, A. (1994). Hierarchical modeling of stochastic networks II: Strong approximations. In Stochastic Modeling and Analysis of Manufacturing Systems (D. D. Yao, ed.) 107-132. Springer, New York.
  • [9] Chen, H. and Ye, H. (1999). Existence condition for the diffusion approximations of multiclass priority queueing networks. Technical Report, Faculty of Commerce and Business Administration, Univ. British Columbia.
  • [10] Chen, H. and Zhang, H. (2000). Diffusion approximations for multiclass FIFO queueing networks. Math. Oper. Res. 25 679-707.
  • [11] Chen, H. and Zhang, H. (1997). Diffusion approximations for re-entrant lines with a firstbuffer-first-served priority discipline. Queueing Systems Theory Appl. 23 177-195.
  • [12] Chen, H. and Zhang, H. (1998). Diffusion approximations for Kumar-Seidman network under a priority service discipline. Oper. Res. Lett. 23 71-81.
  • [13] Chen, H. and Zhang, H. (2000). A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service disciplines. Queueing Systems Theory Appl. To appear.
  • [14] Coffman, E. G., Jr., Puhalskii, A. A. and Reiman, M. I. (1995). Polling systems with zero switchover times: A heavy traffic averaging principle. Ann. Appl. Probab. 5 681-719.
  • [15] Dai, J. G. (1996). A fluid-limit model criterion for instability of multiclass queueing networks. Ann. Appl. Probab. 6 751-757.
  • [16] Dai, J. G. and Harrison, J. M. (1992). Reflected Brownian motion in an orthant: Numerical methods for steady-state analysis. Ann. Appl. Probab. 2 65-86.
  • [17] Dai, J. G., Hasenbein, J. and Vande Vate, J. H. (1999). Stability of a three-station fluid network. Queueing Systems Theory Appl. 33 293-325.
  • [18] Dai, J. G. and Kurtz, T. G. (1995). A multiclass station with Markovian feedback in heavy traffic. Math. Oper. Res. 20 721-742.
  • [19] Dai, J. G. and Nguyen, V. (1994). On the convergence of multiclass queueing networks in heavy traffic. Ann. Appl. Probab. 4 26-42.
  • [20] Dai, J. G. and VandeVate, J. (1996). Global stability of two-station queueing networks. Proceedings of Workshop on Stochastic Networks: Stability and Rare Events. Lecture Notes in Statistics 117 1-26. Springer, New York.
  • [21] Dai, J. G. and VandeVate, J. (2000). The stability of two-station multi-type fluid networks. Oper. Res. 48 721-744.
  • [22] Dai, J. G. and Wang, Y. (1993). Nonexistence of Brownian models of certain multiclass queueing networks. Queueing Systems Theory Appl. 13 41-46.
  • [23] Dai, J. G. and Weiss, G. (1996). Stability and instability of fluid models for re-entrant lines. Math. Oper. Res. 21 115-134.
  • [24] Dai, J. G., Yeh, D. H. and Zhou, C. (1997). The QNET method for re-entrant queueing networks with priority disciplines. Oper. Res. 45 610-623.
  • [25] Dumas, V. (1997). A multiclass network with non-linear, non-convex, non-monotonic stability conditions. Queueing Systems Theory Appl. 25 1-43.
  • [26] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [27] Foschini, G. J. and Salz, J. (1978). A basic dynamic routing problem and diffusion. IEEE Trans. Comm. 26 320-327.
  • [28] Harrison, J. M. and Nguyen, V. (1993). Brownian models of multiclass queueing networks: Current status and open problems. Queueing Systems Theory Appl. 13 5-40.
  • [29] Harrison, J. M. and Nguyen, V. (1995). Some badly behaved closed queueing networks. In Stochastic Networks (F. P. Kelly and R. J. Williams, eds.). 71 117-124. Springer, New York.
  • [30] Harrison, J. M. and Reiman, M. I. (1981). Reflected Brownian motion on an orthant. Ann. Probab. 9 302-308.
  • [31] Harrison, J. M. and Williams, R. J. (1987). Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 15 115-137.
  • [32] Harrison, J. M. and Williams, R. J. (1996). A multiclass closed queueing network with unconventional heavy traffic behavior. Ann. Appl. Probab. 6 1-47.
  • [33] Iglehart, D. L. (1965). Limit theorems for queues with traffic intensity one. Ann. Math. Statist. 36 1437-1449.
  • [34] Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic I. Adv. in Appl. Probab. 2 150-177.
  • [35] Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic II: Sequences, networks, and batches. Adv. in Appl. Probab. 2 355-369.
  • [36] Jackson, J. R. (1957). Networks of waiting lines. Oper. Res. 5 518-521.
  • [37] Johnson, D. P. (1983). Diffusion approximations for optimal filtering of jump processes and for queueing networks. Ph.D. dissertation, Univ. Wisconsin.
  • [38] Kelly, F. P. (1975). Networks of queues with customers of different types. J. Appl. Probab. 12 542-554.
  • [39] Kingman, J. F. C. (1961). On queues in heavy traffic. Proc. Cambridge Philos. Soc. 57 902-904.
  • [40] Kingman, J. F. C. (1965). The heavy traffic approximation in the theory of queues. In Proceedings of the Symposium on Congestion Theory (W. L. Smith et al., eds.) 137-159. Univ. North Carolina Press, Chapel Hill.
  • [41] Lu, S. H. and Kumar, P. R. (1991). Distributed scheduling based on due dates and buffer priorities. IEEE Trans. Automat. Control 36 1406-1416.
  • [42] Peterson, W. P. (1991). A heavy traffic limit theorem for networks of queues with multiple customer types. Math. Oper. Res. 16 90-118.
  • [43] Prohorov, Y. (1963). Transient phenomena in processes of mass service. Litovsk. Mat. Sb. 3 199-205 [in Russian].
  • [44] Reiman, M. I. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9 441-458.
  • [45] Reiman, M. I. (1984). Some diffusion approximations with state space collapse. In Modeling and Performance Evaluation Methodology (F. Baccelli and G. Fayolle, eds.) 209-240. Springer, Berlin.
  • [46] Reiman, M. I. (1988). A multiclass feedback queue in heavy traffic. Adv. in Appl. Probab. 20 179-207.
  • [47] Reiman, M. I. and Williams, R. J. (1989). A boundary property of semimartingale reflecting Brownian motions. Probab. Theory Related Fields 77 87-97. [Correction (1989) 80 633.]
  • [48] Stolyar, A. L. (1995). On the stability of multiclass queueing networks: A relaxed sufficient condition via limiting fluid processes. Markov Process. Related Fields 1 491-512.
  • [49] Taylor, L. M. and Williams, R. J. (1993). Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Related Fields 96 283-317.
  • [50] Whitt, W. (1971). Weak convergence theorems for priority queues: Preemptive-resume discipline. J. Appl. Probab. 8 74-94.
  • [51] Whitt, W. (1974). Heavy traffic theorems for queues: A survey. In Mathematical Methods in Queueing Theory (A. B. Clarke, ed.) 307-350. Springer, New York.
  • [52] Whitt, W. (1993). Large fluctuations in a deterministic multiclass network of queues. Management Sciences 39 1020-1028.
  • [53] Williams, R. J. (1996). On the approximation of queueing networks in heavy traffic. In Stochastic Networks: Theory and Applications (F. P. Kelly, S. Zachary and I. Ziedins, eds.) Oxford Univ. Press.
  • [54] Williams, R. J. (1998). Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse. Queueing Systems Theory Appl. 30 27-88.
  • [55] Williams, R. J. (1998). An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Systems Theory Appl. 30 5-25.
  • [56] Yao, D. D. (1994). Stochastic Modeling and Analysis of Manufacturing Systems. Springer, New York.