The Annals of Applied Probability

The collision spectrum of $\Lambda$-coalescents

Alexander Gnedin, Alexander Iksanov, Alexander Marynych, and Martin Möhle

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

$\Lambda$-coalescents model the evolution of a coalescing system in which any number of blocks randomly sampled from the whole may merge into a larger block. For the coalescent restricted to initially $n$ singletons, we study the collision spectrum $(X_{n,k}:2\le k\le n)$, where $X_{n,k}$ counts, throughout the history of the process, the number of collisions involving exactly $k$ blocks. Our focus is on the large $n$ asymptotics of the joint distribution of the $X_{n,k}$’s, as well as on functional limits for the bulk of the spectrum for simple coalescents. Similar to the previous studies of the total number of collisions, the asymptotics of the collision spectrum largely depends on the behaviour of the measure $\Lambda$ in the vicinity of $0$. In particular, for beta$(a,b)$-coalescents different types of limit distributions occur depending on whether $0<a\leq1$, $1<a<2$, $a=2$ or $a>2$.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 6 (2018), 3857-3883.

Dates
Received: August 2017
Revised: April 2018
First available in Project Euclid: 8 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1538985637

Digital Object Identifier
doi:10.1214/18-AAP1409

Mathematical Reviews number (MathSciNet)
MR3861828

Subjects
Primary: 60J25: Continuous-time Markov processes on general state spaces 60F17: Functional limit theorems; invariance principles
Secondary: 60C05: Combinatorial probability 60G09: Exchangeability

Keywords
Collision spectrum coupling exchangeable coalescent functional approximation

Citation

Gnedin, Alexander; Iksanov, Alexander; Marynych, Alexander; Möhle, Martin. The collision spectrum of $\Lambda$-coalescents. Ann. Appl. Probab. 28 (2018), no. 6, 3857--3883. doi:10.1214/18-AAP1409. https://projecteuclid.org/euclid.aoap/1538985637


Export citation

References

  • [1] Abraham, R. and Delmas, J.-F. (2013). A construction of a $\beta$-coalescent via the pruning of binary trees. J. Appl. Probab. 50 772–790.
  • [2] Abraham, R. and Delmas, J.-F. (2015). $\beta$-coalescents and stable Galton-Watson trees. ALEA Lat. Am. J. Probab. Math. Stat. 12 451–476.
  • [3] Alsmeyer, G., Iksanov, A. and Marynych, A. (2017). Functional limit theorems for the number of occupied boxes in the Bernoulli sieve. Stochastic Process. Appl. 127 995–1017.
  • [4] Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society (EMS), Zürich.
  • [5] Barbour, A. D. and Gnedin, A. V. (2006). Regenerative compositions in the case of slow variation. Stochastic Process. Appl. 116 1012–1047.
  • [6] Basdevant, A.-L. and Goldschmidt, C. (2008). Asymptotics of the allele frequency spectrum associated with the Bolthausen-Sznitman coalescent. Electron. J. Probab. 13 486–512.
  • [7] Berestycki, J., Berestycki, N. and Limic, V. (2014). Asymptotic sampling formulae for $\Lambda$-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 50 715–731.
  • [8] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge.
  • [9] Birkner, M. and Blath, J. (2008). Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model. J. Math. Biol. 57 435–465.
  • [10] Birkner, M., Blath, J. and Eldon, B. (2013). Statistical properties of the site-frequency spectrum associated with $\Lambda$-coalescents. Genetics 195 1037–1053.
  • [11] Blath, J., Cronjäger, M. C., Eldon, B. and Hammer, M. (2016). The site-frequency spectrum associated with $\Xi$-coalescents. Theor. Popul. Biol. 110 36–50.
  • [12] Cooper, C. (2006). Distribution of vertex degree in web-graphs. Combin. Probab. Comput. 15 637–661.
  • [13] Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18 997–1025.
  • [14] Diehl, C. and Kersting, G. (2018). Tree lengths for general $\Lambda$-coalescents and the asymptotic site frequency spectrum around the Bolthausen–Sznitman coalescent. Preprint. Available at https://arxiv.org/abs/1804.00961.
  • [15] Dong, R., Gnedin, A. and Pitman, J. (2007). Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Probab. 17 1172–1201.
  • [16] Drmota, M. and Gittenberger, B. (1999). The distribution of nodes of given degree in random trees. J. Graph Theory 31 227–253.
  • [17] Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent. Stochastic Process. Appl. 117 1404–1421.
  • [18] Eldon, B., Birkner, M., Blath, J. and Freund, F. (2014). Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents? Genetics 199 841–856.
  • [19] Eldon, B. and Wakeley, J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172 2621–2633.
  • [20] Faÿ, G., González-Arévalo, B., Mikosch, T. and Samorodnitsky, G. (2006). Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54 121–140.
  • [21] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. 2nd ed. Wiley, New York.
  • [22] Gnedin, A. and Iksanov, A. (2012). Regenerative compositions in the case of slow variation: A renewal theory approach. Electron. J. Probab. 17 Paper no. 77.
  • [23] Gnedin, A., Iksanov, A. and Marynych, A. (2010). Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stoch. Process. 16(32) 44–57.
  • [24] Gnedin, A., Iksanov, A. and Marynych, A. (2011). On $\Lambda$-coalescents with dust component. J. Appl. Probab. 48 1133–1151.
  • [25] Gnedin, A., Iksanov, A. and Marynych, A. (2014). $\Lambda$-coalescents: A survey. J. Appl. Probab. 51A 23–40.
  • [26] Gnedin, A., Iksanov, A., Marynych, A. and Möhle, M. (2014). On asymptotics of the beta coalescents. Adv. in Appl. Probab. 46 496–515.
  • [27] Gnedin, A., Iksanov, A. and Möhle, M. (2008). On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Probab. 45 1186–1195.
  • [28] Gnedin, A. and Pitman, J. (2005). Regenerative composition structures. Ann. Probab. 33 445–479.
  • [29] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for compositions derived from transformed subordinators. Ann. Probab. 34 468–492.
  • [30] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for regenerative compositions: Gamma subordinators and the like. Probab. Theory Related Fields 135 576–602.
  • [31] Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in $\Lambda$-coalescents. Electron. J. Probab. 12 1547–1567.
  • [32] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10 718–745.
  • [33] Haas, B. and Miermont, G. (2011). Self-similar scaling limits of non-increasing Markov chains. Bernoulli 17 1217–1247.
  • [34] Hu, Y., Boyd-Graber, J., Daumé, H. III and Ying, Z. I. (2013). Binary to bushy: Bayesian hierarchical clustering with the beta coalescent. Adv. Neural Inf. Process. Syst. 26.
  • [35] Iksanov, A., Marynych, A. and Meiners, M. (2017). Asymptotics of random processes with immigration I: Scaling limits. Bernoulli 23 1233–1278.
  • [36] Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in $\operatorname{beta}(2,b)$-coalescents. Bernoulli 15 829–845.
  • [37] Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab. 12 28–35.
  • [38] Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. in Appl. Probab. 40 206–228.
  • [39] Janson, S. (2005). Asymptotic degree distribution in random recursive trees. Random Structures Algorithms 26 69–83.
  • [40] Kersting, G., Schweinsberg, J. and Wakolbinger, A. (2018). The size of the last merger and time reversal in $\Lambda$-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 54 1527–1555.
  • [41] Möhle, M. (2018). On strictly monotone Markov chains with constant hitting probabilities and applications to a class of beta coalescents. Markov Process. Related Fields 24 107–130.
  • [42] Neher, R. A. and Hallatschek, A. (2013). Genealogies of rapidly adapting populations. Proc. Natl. Acad. Sci. USA 110 437–442.
  • [43] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902.
  • [44] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin.
  • [45] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116–1125.
  • [46] Schweinsberg, J. and Durrett, R. (2005). Random partitions approximating the coalescence of lineages during a selective sweep. Ann. Appl. Probab. 15 1591–1651.
  • [47] Shiryaev, A. N. (1989). Probability, Vol. I, 4th ed. Nauka, Moscow.
  • [48] Spence, J. P., Kamm, J. A. and Song, Y. S. (2016). The site frequency spectrum for general coalescents. Genetics 202 1549–1561.
  • [49] Teh, Y. W., Daumé, H. III and Roy, D. M. (2008). Bayesian agglomerative clustering with coalescents. Adv. Neural Inf. Process. Syst. 20 1473–1480.