The Annals of Applied Probability

Cluster size distributions of extreme values for the Poisson–Voronoi tessellation

Nicolas Chenavier and Christian Y. Robert

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the Voronoi tessellation based on a homogeneous Poisson point process in an Euclidean space. For a geometric characteristic of the cells (e.g., the inradius, the circumradius, the volume), we investigate the point process of the nuclei of the cells with large values. Conditions are obtained for the convergence in distribution of this point process of exceedances to a homogeneous compound Poisson point process. We provide a characterization of the asymptotic cluster size distribution which is based on the Palm version of the point process of exceedances. This characterization allows us to compute efficiently the values of the extremal index and the cluster size probabilities by simulation for various geometric characteristics. The extension to the Poisson–Delaunay tessellation is also discussed.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 6 (2018), 3291-3323.

Dates
Received: July 2016
Revised: May 2017
First available in Project Euclid: 8 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1538985623

Digital Object Identifier
doi:10.1214/17-AAP1345

Mathematical Reviews number (MathSciNet)
MR3861814

Zentralblatt MATH identifier
06994394

Subjects
Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 62G32: Statistics of extreme values; tail inference 60G70: Extreme value theory; extremal processes
Secondary: 60F05: Central limit and other weak theorems

Keywords
Extreme values Voronoi tessellations exceedance point processes

Citation

Chenavier, Nicolas; Robert, Christian Y. Cluster size distributions of extreme values for the Poisson–Voronoi tessellation. Ann. Appl. Probab. 28 (2018), no. 6, 3291--3323. doi:10.1214/17-AAP1345. https://projecteuclid.org/euclid.aoap/1538985623


Export citation

References

  • [1] Aurenhammer, F., Klein, R. and Lee, D.-T. (2013). Voronoi Diagrams and Delaunay Triangulations. World Scientific, Hackensack, NJ.
  • [2] Avram, F. and Bertsimas, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033–1046.
  • [3] Baccelli, F. and Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks. Vol. 1: Theory; Vol. 2: Applications. Foundations and Trends in Networking.
  • [4] Basrak, B. and Segers, J. (2009). Regularly varying multivariate time series. Stochastic Process. Appl. 119 1055–1080.
  • [5] Baumstark, V. and Last, G. (2007). Some distributional results for Poisson–Voronoi tessellations. Adv. in Appl. Probab. 39 16–40.
  • [6] Calka, P. (2002). The distributions of the smallest disks containing the Poisson–Voronoi typical cell and the Crofton cell in the plane. Adv. in Appl. Probab. 34 702–717.
  • [7] Calka, P. and Chenavier, N. (2014). Extreme values for characteristic radii of a Poisson–Voronoi tessellation. Extremes 17 359–385.
  • [8] Calka, P. and Schreiber, T. (2005). Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33 1625–1642.
  • [9] Cazals, F. and Giesen, J. (2006). Delaunay triangulation based surface reconstruction. Effective Computational Geometry for Curves and Surfaces 231–276.
  • [10] Chenavier, N. (2014). A general study of extremes of stationary tessellations with examples. Stochastic Process. Appl. 124 2917–2953.
  • [11] Cheng, S.-W., Dey, T. K. and Shewchuk, J. R. (2013). Delaunay Mesh Generation. Chapman & Hall/CRC, Boca Raton, FL.
  • [12] Ferreira, H. and Pereira, L. (2012). Point processes of exceedances by random fields. J. Statist. Plann. Inference 142 773–779.
  • [13] Foss, S. G. and Zuyev, S. A. (1996). On a Voronoi aggregative process related to a bivariate Poisson process. Adv. in Appl. Probab. 28 965–981.
  • [14] Heinrich, L. and Muche, L. (2008). Second-order properties of the point process of nodes in a stationary Voronoi tessellation. Math. Nachr. 281 350–375.
  • [15] Hsing, L., Hüsler, J. and Leadbetter, M. R. (1988). On the exceedance point process for a stationary sequence. Probab. Theory Related Fields 78 97–112.
  • [16] Hug, D., Reitzner, M. and Schneider, R. (2004). Large Poisson–Voronoi cells and Crofton cells. Adv. in Appl. Probab. 36 667–690.
  • [17] Kendall, D. G. (1990). Random Delaunay simplexes in $\mathbf{R}^{m}$. J. Statist. Plann. Inference 25 225–234.
  • [18] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.
  • [19] Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete 65 291–306.
  • [20] Miles, R. E. (1973). The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10 256–290.
  • [21] Møller, J. (1989). Random tessellations in $R^{d}$. Adv. in Appl. Probab. 21 37–73.
  • [22] Muche, L. (2005). The Poisson–Voronoi tessellation: Relationships for edges. Adv. in Appl. Probab. 37 279–296.
  • [23] Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed. Wiley, Chichester.
  • [24] Pagès, G. and Wilbertz, B. (2012). Optimal Delaunay and Voronoi quantization schemes for pricing American style options. Springer Proc. Math. 12 171–213.
  • [25] Perfekt, R. (1994). Extremal behaviour of stationary Markov chains with applications. Ann. Appl. Probab. 4 529–548.
  • [26] Poupon, A. (2004). Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opin. Struct. Biol. 14 233–241.
  • [27] Robert, C. Y. (2009). Inference for the limiting cluster size distribution of extreme values. Ann. Statist. 37 271–310.
  • [28] Rootzén, H. (1988). Maxima and exceedances of stationary Markov chain. Adv. in Appl. Probab.
  • [29] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.
  • [30] Smith, R. L. (1988). A counterexample concerning the extremal index. Adv. in Appl. Probab. 20 681–683.
  • [31] Smith, R. L. and Weissman, I. (1994). Estimating the extremal index. J. Roy. Statist. Soc. Ser. B 56 515–528.
  • [32] Stoyan, D., Kendall, W. and Mecke, J. (2008). Stochastic Geometry and Its Applications. Wiley, New York.
  • [33] Zaninetti, L. (2014). The oscillating behavior of the pair correlation function in galaxies. Applied Physics Research 1 35–46.