The Annals of Applied Probability

Beating the omega clock: An optimal stopping problem with random time-horizon under spectrally negative Lévy models

Neofytos Rodosthenous and Hongzhong Zhang

Full-text: Open access

Abstract

We study the optimal stopping of an American call option in a random time-horizon under exponential spectrally negative Lévy models. The random time-horizon is modeled as the so-called Omega default clock in insurance, which is the first time when the occupation time of the underlying Lévy process below a level $y$, exceeds an independent exponential random variable with mean $1/q>0$. We show that the shape of the value function varies qualitatively with different values of $q$ and $y$. In particular, we show that for certain values of $q$ and $y$, some quantitatively different but traditional up-crossing strategies are still optimal, while for other values we may have two disconnected continuation regions, resulting in the optimality of two-sided exit strategies. By deriving the joint distribution of the discounting factor and the underlying process under a random discount rate, we give a complete characterization of all optimal exercising thresholds. Finally, we present an example with a compound Poisson process plus a drifted Brownian motion.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 4 (2018), 2105-2140.

Dates
Received: October 2016
Revised: March 2017
First available in Project Euclid: 9 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1533780269

Digital Object Identifier
doi:10.1214/17-AAP1322

Mathematical Reviews number (MathSciNet)
MR3843825

Zentralblatt MATH identifier
06974747

Subjects
Primary: 60G40: Stopping times; optimal stopping problems; gambling theory [See also 62L15, 91A60] 60G51: Processes with independent increments; Lévy processes
Secondary: 60G17: Sample path properties

Keywords
Lévy process optimal stopping Omega clock occupation times random discount rate impatience

Citation

Rodosthenous, Neofytos; Zhang, Hongzhong. Beating the omega clock: An optimal stopping problem with random time-horizon under spectrally negative Lévy models. Ann. Appl. Probab. 28 (2018), no. 4, 2105--2140. doi:10.1214/17-AAP1322. https://projecteuclid.org/euclid.aoap/1533780269


Export citation

References

  • [1] Albrecher, H., Gerber, H. U. and Shiu, E. S. W. (2011). The optimal dividend barrier in the gamma-omega model. Eur. Actuar. J. 1 43–55.
  • [2] Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab. 15 2062–2080.
  • [3] Carr, P. (1998). Randomization and the American put. Rev. Financ. Stud. 11 597–626.
  • [4] Carr, P. and Linetsky, V. (2000). The valuation of executive stock options in an intensity-based framework. Eur. Finance Rev. 4 211–230.
  • [5] Chesney, M., Jeanblanc-Picqué, M. and Yor, M. (1997). Brownian excursions and Parisian barrier options. Adv. in Appl. Probab. 29 165–184.
  • [6] Christensen, S. and Irle, A. (2013). American options with guarantee—A class of two-sided stopping problems. Stat. Risk Model. 30 237–254.
  • [7] Dayanik, S. (2008). Optimal stopping of linear diffusions with random discounting. Math. Oper. Res. 33 645–661.
  • [8] Egami, M. and Yamazaki, K. (2014). On the continuous and smooth fit principle for optimal stopping problems in spectrally negative Lévy models. Adv. in Appl. Probab. 46 139–167.
  • [9] Haldane, A. (2010). Patience and finance. In Remarks at the Oxford China Business Forum, Beijing. Available at http://www.bankofengland.co.uk/archive/Documents/historicpubs/speeches/2010/speech445.pdf.
  • [10] Hart, I. and Ross, M. (1994). Striking continuity. Risk 7 51–56.
  • [11] Kuznetsov, A., Kyprianou, A. E. and Rivero, V. (2012). The theory of scale functions for spectrally negative Lévy processes. In Lévy Matters II. Lecture Notes in Math. 2061 97–186. Springer, Heidelberg.
  • [12] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.
  • [13] Kyprianou, A. E., Pardo, J. C. and Pérez, J. L. (2014). Occupation times of refracted Lévy processes. J. Theoret. Probab. 27 1292–1315.
  • [14] Landriault, D., Li, B. and Zhang, H. (2017). On magnitude, asymptotics and duration of drawdowns for Lévy models. Bernoulli 23 432–458.
  • [15] Leung, T., Yamazaki, K. and Zhang, H. (2015). Optimal multiple stopping with negative discount rate and random refraction times under Lévy models. SIAM J. Control Optim. 53 2373–2405.
  • [16] Linetsky, V. (1999). Step options. Math. Finance 9 55–96.
  • [17] Loeffen, R., Czarna, I. and Palmowski, Z. (2013). Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19 599–609.
  • [18] Loeffen, R. L. (2015). On obtaining simple identities for overshoots of spectrally negative Lévy processes. Available at https://arxiv.org/abs/1410.5341.
  • [19] Loeffen, R. L., Renaud, J.-F. and Zhou, X. (2014). Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stochastic Process. Appl. 124 1408–1435.
  • [20] Miura, R. (1992). A note on look-back options based on order statistics. Hitotsubashi J. Commer. Manag. 27 15–28.
  • [21] Mordecki, E. (2002). Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6 473–493.
  • [22] Øksendal, B. and Sulem, A. (2005). Applied Stochastic Control of Jump Diffusions. Springer, Berlin.
  • [23] Rodosthenous, N. and Zhang, H. (2017). Beating the Omega clock: An optimal stopping problem with random time-horizon under spectrally negative Lévy models (Extended version). Available at https://arxiv.org/abs/1706.03724v1.
  • [24] Surya, B. A. (2007). An approach for solving perpetual optimal stopping problems driven by Lévy processes. Stochastics 79 337–361.
  • [25] Trabelsi, F. (2011). Asymptotic behavior of random maturity American options. IAENG Int. J. Appl. Math. 41 112–121.
  • [26] Zhang, H. (2015). Occupation times, drawdowns, and drawups for one-dimensional regular diffusions. Adv. in Appl. Probab. 47 210–230.