The Annals of Applied Probability

Typical distances in the directed configuration model

Pim van der Hoorn and Mariana Olvera-Cravioto

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We analyze the distribution of the distance between two nodes, sampled uniformly at random, in digraphs generated via the directed configuration model, in the supercritical regime. Under the assumption that the covariance between the in-degree and out-degree is finite, we show that the distance grows logarithmically in the size of the graph. In contrast with the undirected case, this can happen even when the variance of the degrees is infinite. The main tool in the analysis is a new coupling between a breadth-first graph exploration process and a suitable branching process based on the Kantorovich–Rubinstein metric. This coupling holds uniformly for a much larger number of steps in the exploration process than existing ones, and is therefore of independent interest.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 3 (2018), 1739-1792.

Dates
Received: November 2015
Revised: August 2017
First available in Project Euclid: 1 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1527840031

Digital Object Identifier
doi:10.1214/17-AAP1342

Subjects
Primary: 05C80: Random graphs [See also 60B20]
Secondary: 60B10: Convergence of probability measures

Keywords
Random digraphs directed configuration model typical distances branching processes couplings Kantorovich–Rubinstein distance

Citation

van der Hoorn, Pim; Olvera-Cravioto, Mariana. Typical distances in the directed configuration model. Ann. Appl. Probab. 28 (2018), no. 3, 1739--1792. doi:10.1214/17-AAP1342. https://projecteuclid.org/euclid.aoap/1527840031


Export citation

References

  • Arratia, R. and Liggett, T. M. (2005). How likely is an i.i.d. degree sequence to be graphical? Ann. Appl. Probab. 15 652–670.
  • Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover Publications, Mineola, NY.
  • Biggins, J. D. and Bingham, N. H. (1993). Large deviations in the supercritical branching process. Adv. in Appl. Probab. 25 757–772.
  • Boldi, P., Rosa, M. and Vigna, S. (2011). HyperANF: Approximating the neighbourhood function of very large graphs on a budget. In Proceedings of the 20th International Conference on World Wide Web 625–634. ACM, New York.
  • Boldi, P. and Vigna, S. (2004). The webgraph framework I: Compression techniques. In Proceedings of the 13th International Conference on World Wide Web 595–602. ACM, New York.
  • Boldi, P. and Vigna, S. (2013). In-core computation of geometric centralities with hyperball: A hundred billion nodes and beyond. In Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on 621–628. IEEE, New York.
  • Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.
  • Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.
  • Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A. and Wiener, J. (2000). Graph structure in the web. Comput. Netw. 33 309–320.
  • Chen, N., Litvak, N. and Olvera-Cravioto, M. (2017). Generalized PageRank on directed configuration networks. Random Structures Algorithms 51 237–274.
  • Chen, N. and Olvera-Cravioto, M. (2013). Directed random graphs with given degree distributions. Stoch. Syst. 3 147–186.
  • Chen, N. and Olvera-Cravioto, M. (2015). Efficient simulation for branching linear recursions. In Proceedings of the 2015 Winter Simulation Conference 1–12.
  • Cooper, C. and Frieze, A. (2004). The size of the largest strongly connected component of a random digraph with a given degree sequence. Combin. Probab. Comput. 13 319–337.
  • del Barrio, E., Giné, E. and Matrán, C. (1999). Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab. 27 1009–1071.
  • Durrett, R. (2010). Random Graph Dynamics, 1st ed. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge.
  • Goh, K.-I., Oh, E., Kahng, B. and Kim, D. (2003). Betweenness centrality correlation in social networks. Phys. Rev. E 67 017101.
  • Grandell, J. (1997). Mixed Poisson Processes. Springer, Berlin.
  • Miller, J. C. (2009). Percolation and epidemics in random clustered networks. Phys. Rev. E (3) 80 020901, 4.
  • Newman, M. E. J. (2002). Spread of epidemic disease on networks. Phys. Rev. E (3) 66 016128, 11.
  • Norros, I., Reittu, H. et al. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75.
  • Penrose, M. D. (2016). The strong giant in a random digraph. J. Appl. Probab. 53 57–70.
  • Serge Dubuc, M. (1971). La densité de la loi-limite d’un processus en cascade expansif. Probab. Theory Related Fields 19 281–290.
  • Timár, G., Goltsev, A., Dorogovtsev, S. and Mendes, J. (2017). Mapping the structure of directed networks: Beyond the “bow-tie” diagram. Physics Review Letters 118.
  • Van Der Hofstad, R. (2016). Random Graphs and Complex Networks 1. Cambridge Univ. Press, Cambridge.
  • van den Esker, H., van der Hofstad, R. and Hooghiemstra, G. (2008). Universality for the distance in finite variance random graphs. J. Stat. Phys. 133 169–202.
  • van den Esker, H., van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Distances in random graphs with infinite mean degrees. Extremes 8 111–141.
  • van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2005). Distances in random graphs with finite variance degrees. Random Structures Algorithms 27 76–123.
  • van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2007). Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12 703–766.
  • Villani, C. (2008). Optimal Transport: Old and New 338. Springer Science & Business Media, Berlin.
  • Wormald, N. C. (1978). Some problems in the enumeration of labelled graphs Ph.D. thesis Newcastle Univ.