Annals of Applied Probability

Max $\kappa$-cut and the inhomogeneous Potts spin glass

Aukosh Jagannath, Justin Ko, and Subhabrata Sen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the asymptotic behavior of the Max $\kappa$-cut on a family of sparse, inhomogeneous random graphs. In the large degree limit, the leading term is a variational problem, involving the ground state of a constrained inhomogeneous Potts spin glass. We derive a Parisi-type formula for the free energy of this model, with possible constraints on the proportions, and derive the limiting ground state energy by a suitable zero temperature limit.

Article information

Ann. Appl. Probab., Volume 28, Number 3 (2018), 1536-1572.

Received: March 2017
Revised: July 2017
First available in Project Euclid: 1 June 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 90C27: Combinatorial optimization 82D30: Random media, disordered materials (including liquid crystals and spin glasses) 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60G15: Gaussian processes 90C06: Large-scale problems

MAX CUT spin glasses Potts model inhomogeneous random graphs


Jagannath, Aukosh; Ko, Justin; Sen, Subhabrata. Max $\kappa$-cut and the inhomogeneous Potts spin glass. Ann. Appl. Probab. 28 (2018), no. 3, 1536--1572. doi:10.1214/17-AAP1337.

Export citation


  • [1] Aiello, W., Chung, F. and Lu, L. (2001). A random graph model for power law graphs. Exp. Math. 10 53–66.
  • [2] Aizenman, M., Sims, R. and Starr, S. L. (2003). Extended variational principle for the Sherrington–Kirkpatrick spin-glass model. Phys. Rev. B 68 214403.
  • [3] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.
  • [4] Arguin, L.-P. and Aizenman, M. (2009). On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 1080–1113.
  • [5] Auffinger, A. and Chen, W.-K. (2017). Parisi formula for the ground state energy in the mixed $p$-spin model. Ann. Probab. 45 4617–4631.
  • [6] Auffinger, A. and Chen, W.-K. (2014). Free energy and complexity of spherical bipartite models. J. Stat. Phys. 157 40–59.
  • [7] Barra, A., Contucci, P., Mingione, E. and Tantari, D. (2015). Multi-species mean field spin glasses. Rigorous results. Ann. Henri Poincaré 16 691–708.
  • [8] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 3–122.
  • [9] Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2008). Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 1801–1851.
  • [10] Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2012). Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2) 176 151–219.
  • [11] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic Theory of Independence, with a Foreword by Michel Ledoux. Oxford Univ. Press, Oxford.
  • [12] Britton, T., Deijfen, M. and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124 1377–1397.
  • [13] Caltagirone, F., Parisi, G. and Rizzo, T. (2012). Dynamical critical exponents for the mean-field Potts glass. Phys. Rev. E 85 051504.
  • [14] Chen, W.-K. and Sen, A. (2017). Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed $p$-spin models. Comm. Math. Phys. 350 129–173.
  • [15] Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Comb. 6 125–145.
  • [16] Decelle, A., Krzakala, F., Moore, C. and Zdeborová, L. (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84 066106.
  • [17] Dembo, A., Montanari, A. and Sen, S. (2017). Extremal cuts of sparse random graphs. Ann. Probab. 45 1190–1217.
  • [18] Dorogovtsev, S. N. and Mendes, J. F. F. (2002). Evolution of networks. Advances in Physics 51 1079–1187.
  • [19] Durrett, R. (2003). Rigorous result for the CHKNS random graph model. In Discrete Random Walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC 95–104. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • [20] Elderfield, D. and Sherrington, D. (1983). The curious case of the Potts spin glass. J. Phys. C, Solid State Phys. 16 L497.
  • [21] Elderfield, D. and Sherrington, D. (1983). Novel non-ergodicity in the Potts spin glass. J. Phys. C, Solid State Phys. 16 L1169.
  • [22] Fu, Y. and Anderson, P. W. (1986). Application of statistical mechanics to NP-complete problems in combinatorial optimisation. J. Phys. A: Math. Gen. 19 1605.
  • [23] Ghirlanda, S. and Guerra, F. (1998). General properties of overlap probability distributions in disordered spin systems. towards parisi ultrametricity. J. Phys. A: Math. Gen. 31 9149.
  • [24] Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 1–12.
  • [25] Holland, P. W., Laskey, K. B. and Leinhardt, S. (1983). Stochastic blockmodels: First steps. Soc. Netw. 5 109–137.
  • [26] Jackson, M. O. (2008). Social and Economic Networks. Princeton Univ. Press, Princeton, NJ.
  • [27] Jagannath, A. and Tobasco, I. (2017). Low temperature asymptotics of spherical mean field spin glasses. Comm. Math. Phys. 352 979–1017.
  • [28] Kahng, A. B., Lienig, J., Markov, I. L. and Hu, J. (2011). VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, New York.
  • [29] Kalikow, S. and Weiss, B. (1988). When are random graphs connected. Israel J. Math. 62 257–268.
  • [30] Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220 671–680.
  • [31] Łuczak, T. (1992). Sparse random graphs with a given degree sequence. In Random Graphs, Vol. 2 (Poznań, 1989). 165–182. Wiley, New York.
  • [32] Massoulié, L. (2014). Community detection thresholds and the weak Ramanujan property. In STOC’14—Proceedings of the 2014 ACM Symposium on Theory of Computing 694–703. ACM, New York.
  • [33] Mézard, M. and Montanari, A. (2009). Information, Physics, and Computation. Oxford Univ. Press, Oxford.
  • [34] Mézard, M., Parisi, G. and Virasoro, M. (1987). Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications 9. World Scientific, Singapore.
  • [35] Mossel, E., Neeman, J. and Sly, A. (2013). A proof of the block model threshold conjecture. Preprint. Available at arXiv:1311.4115.
  • [36] Nishimori, H. and Stephen, M. J. (1983). Gauge-invariant frustrated Potts spin-glass. Phys. Rev. B 27 5644–5652.
  • [37] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75.
  • [38] Panchenko, D. (2013). Spin glass models from the point of view of spin distributions. Ann. Probab. 41 1315–1361.
  • [39] Panchenko, D. (2013). The Parisi ultrametricity conjecture. Ann. of Math. (2) 177 383–393.
  • [40] Panchenko, D. (2013). The Sherrington–Kirkpatrick Model. Springer, New York.
  • [41] Panchenko, D. (2014). The Parisi formula for mixed $p$-spin models. Ann. Probab. 42 946–958.
  • [42] Panchenko, D. (2018). Free energy in the mixed $p$-spin models with vector spins. Ann. Probab. 46 865–896.
  • [43] Panchenko, D. (2018). Free energy in the Potts spin glass. Ann. Probab. 46 829–864.
  • [44] Panchenko, D. (2015). The free energy in a multi-species Sherrington-Kirkpatrick model. Ann. Probab. 43 3494–3513.
  • [45] Poljak, S. and Tuza, Z. (1993). The Max-Cut Problem—a Survey. Acad. Sinica, Taipei.
  • [46] Porter, M. A., Onnela, J.-P. and Mucha, P. J. (2009). Communities in networks. Notices Amer. Math. Soc. 56 1082–1097.
  • [47] Ruelle, D. (1987). A mathematical reformulation of Derrida’s REM and GREM. Comm. Math. Phys. 108 225–239.
  • [48] Sen, S. (2016). Optimization on sparse random hypergraphs and spin glasses. Preprint. Available at arXiv:1606.02365.
  • [49] Shepp, L. A. (1989). Connectedness of certain random graphs. Israel J. Math. 67 23–33.
  • [50] Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin-glass. Phys. Rev. Lett. 35 1792–1796.
  • [51] Söderberg, B. (2002). General formalism for inhomogeneous random graphs. Phys. Rev. E (3) 66 066121, 6.
  • [52] Talagrand, M. (2010). Mean Field Models for Spin Glasses: Volume I: Basic Examples 54. Springer, New York.