The Annals of Applied Probability

Spatial Gibbs random graphs

Jean-Christophe Mourrat and Daniel Valesin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Many real-world networks of interest are embedded in physical space. We present a new random graph model aiming to reflect the interplay between the geometries of the graph and of the underlying space. The model favors configurations with small average graph distance between vertices, but adding an edge comes at a cost measured according to the geometry of the ambient physical space. In most cases, we identify the order of magnitude of the average graph distance as a function of the parameters of the model. As the proofs reveal, hierarchical structures naturally emerge from our simple modeling assumptions. Moreover, a critical regime exhibits an infinite number of discontinuous phase transitions.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 2 (2018), 751-789.

Dates
Received: June 2016
Revised: February 2017
First available in Project Euclid: 11 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1523433624

Digital Object Identifier
doi:10.1214/17-AAP1316

Mathematical Reviews number (MathSciNet)
MR3784488

Zentralblatt MATH identifier
06897943

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35] 05C80: Random graphs [See also 60B20]

Keywords
Spatial random graph Gibbs measure phase transition

Citation

Mourrat, Jean-Christophe; Valesin, Daniel. Spatial Gibbs random graphs. Ann. Appl. Probab. 28 (2018), no. 2, 751--789. doi:10.1214/17-AAP1316. https://projecteuclid.org/euclid.aoap/1523433624


Export citation

References

  • [1] Achlioptas, D. and Siminelakis, P.. Product measure approximation of symmetric graph properties. Preprint. Available at arXiv:1502.07787.
  • [2] Aiello, W., Bonato, A., Cooper, C., Janssen, J. and Prałat, P. (2008). A spatial web graph model with local influence regions. Internet Math. 5 175–196.
  • [3] Aizenman, M., Kesten, H. and Newman, C. M. (1987). Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Comm. Math. Phys. 111 505–531.
  • [4] Aizenman, M. and Newman, C. M. (1986). Discontinuity of the percolation density in one-dimensional $1/\vert x-y\vert^{2}$ percolation models. Comm. Math. Phys. 107 611–647.
  • [5] Aldous, D. J. (2008). Optimal spatial transportation networks where link costs are sublinear in link capacity. J. Stat. Mech. Theory Exp. 2008 P03006.
  • [6] Aldous, D. J. and Kendall, W. S. (2008). Short-length routes in low-cost networks via Poisson line patterns. Adv. in Appl. Probab. 40 1–21.
  • [7] Aldous, D. J. and Shun, J. (2010). Connected spatial networks over random points and a route-length statistic. Statist. Sci. 25 275–288.
  • [8] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–512.
  • [9] Benjamini, I. and Berger, N. (2001). The diameter of long-range percolation clusters on finite cycles. Random Structures Algorithms 19 102–111.
  • [10] Biskup, M. (2004). On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32 2938–2977.
  • [11] Biskup, M. (2011). Graph diameter in long-range percolation. Random Structures Algorithms 39 210–227.
  • [12] Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random graph models. Ann. Statist. 41 2428–2461.
  • [13] Cooper, C., Frieze, A. and Prałat, P. (2014). Some typical properties of the spatial preferred attachment model. Internet Math. 10 116–136.
  • [14] Coppersmith, D., Gamarnik, D. and Sviridenko, M. (2002). The diameter of a long-range percolation graph. Random Structures Algorithms 21 1–13.
  • [15] Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49 817–838.
  • [16] Ding, J. and Sly, A. Distances in critical long range percolation. Preprint. Available at arXiv:1303.3995.
  • [17] Flaxman, A. D., Frieze, A. M. and Vera, J. (2006). A geometric preferential attachment model of networks. Internet Math. 3 187–205.
  • [18] Gandolfi, A., Keane, M. S. and Newman, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92 511–527.
  • [19] Gantert, N., Ramanan, K. and Rembart, F. (2014). Large deviations for weighted sums of stretched exponential random variables. Electron. Commun. Probab. 19 no. 41, 14.
  • [20] Jacob, E. and Mörters, P. (2015). Spatial preferential attachment networks: Power laws and clustering coefficients. Ann. Appl. Probab. 25 632–662.
  • [21] Jacob, E. and Mörters, P. (2017). Robustness of scale-free spatial networks. Ann. Probab. 45 1680–1722.
  • [22] Janssen, J., Prałat, P. and Wilson, R. (2013). Geometric graph properties of the spatial preferred attachment model. Adv. in Appl. Math. 50 243–267.
  • [23] Jordan, J. (2010). Degree sequences of geometric preferential attachment graphs. Adv. in Appl. Probab. 42 319–330.
  • [24] Keller, E. F. (2005). Revisiting “scale-free” networks. BioEssays 27 1060–1068.
  • [25] Li, L., Alderson, D., Willinger, W. and Doyle, J. (2004). A first-principles approach to understanding the Internet’s router-level topology. Comput. Commun. Rev. 34 3–14.
  • [26] Louf, R., Jensen, P. and Barthelemy, M. (2013). Emergence of hierarchy in cost-driven growth of spatial networks. Proc. Natl. Acad. Sci. USA 110 8824–8829.
  • [27] Mengistu, H., Huizinga, J., Mouret, J.-B. and Clune, J. (2016). The evolutionary origins of hierarchy. PLoS Comput. Biol. 12 e1004829.
  • [28] Mountford, T. and Mourrat, J.-C. (2013). Lyapunov exponents of random walks in small random potential: The lower bound. Comm. Math. Phys. 323 1071–1120.
  • [29] Newman, C. M. and Schulman, L. S. (1986). One-dimensional $1/\vert j-i\vert^{s}$ percolation models: The existence of a transition for $s\leq2$. Comm. Math. Phys. 104 547–571.
  • [30] Schulman, L. S. (1983). Long range percolation in one dimension. J. Phys. A 16 L639–L641.
  • [31] Simon, H. A. (1955). On a class of skew distribution functions. Biometrika 42 425–440.
  • [32] Simon, H. A. (1960). Some further notes on a class of skew distribution functions. Inf. Control 3 80–88.
  • [33] Sporns, O. and Kötter, R. (2004). Motifs in brain networks. PLoS Biology 2 e369.
  • [34] Sporns, O. and Tononi, G. (2001). Classes of network connectivity and dynamics. Complexity 7 28–38.
  • [35] Sporns, O., Tononi, G. and Edelman, G. M. (2000). Connectivity and complexity: The relationship between neuroanatomy and brain dynamics. Neural Netw. 13 909–922.
  • [36] Sporns, O., Tononi, G. and Edelman, G. M. (2000). Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10 127–141.
  • [37] van der Hofstad, R. Random graphs and complex networks. Available at http://www.win.tue.nl/~rhofstad/NotesRGCN.html.
  • [38] Verma, T., Russmann, F., Araújo, N., Nagler, J. and Herrmann, H. (2016). Emergence of core-peripheries in networks. Nat. Commun. 7 10441.
  • [39] Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 213 21–87.