The Annals of Applied Probability

The shape of multidimensional Brunet–Derrida particle systems

Nathanaël Berestycki and Lee Zhuo Zhao

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We introduce particle systems in one or more dimensions in which particles perform branching Brownian motion and the population size is kept constant equal to $N>1$, through the following selection mechanism: at all times only the $N$ fittest particles survive, while all the other particles are removed. Fitness is measured with respect to some given score function $s:\mathbb{R}^{d}\to\mathbb{R}$. For some choices of the function $s$, it is proved that the cloud of particles travels at positive speed in some possibly random direction. In the case where $s$ is linear, we show under some mild assumptions that the shape of the cloud scales like $\log N$ in the direction parallel to motion but at least $(\log N)^{3/2}$ in the orthogonal direction. We conjecture that the exponent $3/2$ is sharp. In order to prove this, we obtain the following result of independent interest: in one-dimensional systems, the genealogical time is greater than $c(\log N)^{3}$. We discuss several open problems and explain how our results can be viewed as a rigorous justification in our setting of empirical observations made by Burt [Evolution 54 (2000) 337–351] in support of Weismann’s arguments for the role of recombination in population genetics.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 2 (2018), 651-687.

Dates
Received: May 2013
Revised: August 2014
First available in Project Euclid: 11 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1523433619

Digital Object Identifier
doi:10.1214/14-AAP1062

Mathematical Reviews number (MathSciNet)
MR3784486

Zentralblatt MATH identifier
06897941

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 92B05: General biology and biomathematics

Keywords
Brunet–Derrida particle systems branching Brownian motion random travelling wave recombination

Citation

Berestycki, Nathanaël; Zhao, Lee Zhuo. The shape of multidimensional Brunet–Derrida particle systems. Ann. Appl. Probab. 28 (2018), no. 2, 651--687. doi:10.1214/14-AAP1062. https://projecteuclid.org/euclid.aoap/1523433619


Export citation

References

  • [1] Bell, G. (1982). The Masterpiece of Nature. Univ. California Press, Berkeley, CA.
  • [2] Bérard, J. and Gouéré, J.-B. (2010). Brunet–Derrida behavior of branching-selection particle systems on the line. Comm. Math. Phys. 298 323–342.
  • [3] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2011). Survival of near-critical branching Brownian motion. J. Stat. Phys. 143 833–854.
  • [4] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2013). The genealogy of branching Brownian motion with absorption. Ann. Probab. 41 527–618.
  • [5] Berestycki, J. and Yu, F. Unpublished work.
  • [6] Berestycki, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos [Mathematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro.
  • [7] Brunet, E. and Derrida, B. (1997). Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3) 56 2597–2604.
  • [8] Brunet, E. and Derrida, B. (1999). Microscopic models of traveling wave equations. Comput. Phys. Commun. 121–122 376–381.
  • [9] Brunet, É. and Derrida, B. (2001). Effect of microscopic noise on front propagation. J. Stat. Phys. 103 269–282.
  • [10] Brunet, E., Derrida, B., Mueller, A. H. and Munier, S. (2006). Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76 1–7.
  • [11] Brunet, É., Derrida, B., Mueller, A. H. and Munier, S. (2007). Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 041104, 20.
  • [12] Burt, A. (2000). Perspective: Sex, recombination and the efficacy of selection—Was Weismann right? Evolution 54 337–351.
  • [13] Durrett, R. and Remenik, D. (2011). Brunet–Derrida particle systems, free boundary problems and Wiener–Hopf equations. Ann. Probab. 39 2043–2078.
  • [14] Etheridge, A. M. (2000). An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI.
  • [15] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen–Sznitman coalescent. Electron. J. Probab. 10 718–745.
  • [16] Groisman, P. and Jonckheere, M. (2013) Front propagation and quasi-stationary distributions: The same selection principle? Available at arXiv:1304.4847.
  • [17] Harris, J. W. and Harris, S. C. (2007). Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 81–92.
  • [18] Itô, K. and McKean, H. P. Jr. (1965). Diffusion Processes and Their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften Band 125. Springer, New York.
  • [19] Maillard, P. (2012). Branching Brownian motion with selection. Ph.D. thesis, Univ. Pierre et Marie Curie. Available at arXiv:1210.3500.
  • [20] Maillard, P. (2016). Speed and fluctuations of $N$-particle branching Brownian motion with spatial selection. Probab. Theory Related Fields 166 1061–1173.
  • [21] Roynette, B., Vallois, P. and Yor, M. (2009). Penalisations of multidimensional Brownian motion. VI. ESAIM Probab. Stat. 13 152–180.
  • [22] Weismann, A. (1889). The significance of sexual reproduction in the theory of natural selection. In Essays upon Heredity and Kindred Biological Problems (E. B. Poulton, S. Schönland and A. E. Shipley, eds.) 251–332. Clarendon Press, Oxford.
  • [23] Williams, G. C. (1966). Adaptation and Natural Selection. Princeton Univ. Press, Princeton, NJ.