Annals of Applied Probability

Evolving voter model on dense random graphs

Riddhipratim Basu and Allan Sly

Full-text: Open access


In this paper, we examine a variant of the voter model on a dynamically changing network where agents have the option of changing their friends rather than changing their opinions. We analyse, in the context of dense random graphs, two models considered in Durrett et al. [Proc. Natl. Acad. Sci. USA 109 (2012) 3682–3687]. When an edge with two agents holding different opinion is updated, with probability $\frac{\beta }{n}$, one agent performs a voter model step and changes its opinion to copy the other, and with probability $1-\frac{\beta }{n}$, the edge between them is broken and reconnected to a new agent chosen randomly from (i) the whole network (rewire-to-random model) or, (ii) the agents having the same opinion (rewire-to-same model). We rigorously establish in both the models, the time for this dynamics to terminate exhibits a phase transition in the model parameter $\beta $. For $\beta $ sufficiently small, with high probability the network rapidly splits into two disconnected communities with opposing opinions, whereas for $\beta $ large enough the dynamics runs for longer and the density of opinion changes significantly before the process stops. In the rewire-to-random model, we show that a positive fraction of both opinions survive with high probability.

Article information

Ann. Appl. Probab., Volume 27, Number 2 (2017), 1235-1288.

Received: September 2015
Revised: April 2016
First available in Project Euclid: 26 May 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments 05C80: Random graphs [See also 60B20] 05C81: Random walks on graphs

Voter model coevolutionary network dense Erdős–Rényi graphs


Basu, Riddhipratim; Sly, Allan. Evolving voter model on dense random graphs. Ann. Appl. Probab. 27 (2017), no. 2, 1235--1288. doi:10.1214/16-AAP1230.

Export citation


  • [1] Aldous, D. and Fill, J. A. (2002). Reversible Markov Chains And Random Walks On Graphs. Unfinished monograph. Recompiled 2014. Available at
  • [2] Basak, A. Durrett, R. and Zhang, Y. (2015). The evolving voter model on thick graphs. Preprint. Available at arXiv:1512.07871.
  • [3] Durrett, R. (2010). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
  • [4] Durrett, R., Gleeson, J. P., Lloyd, A. L., Mucha, P. J., Shi, F., Sivakoff, D., Socolar, J. E. S. and Varghese, C. (2012). Graph fission in an evolving voter model. Proc. Natl. Acad. Sci. USA 109 3682–3687.
  • [5] Friedland, S. and Nabben, R. (2002). On Cheeger-type inequalities for weighted graphs. J. Graph Theory 41 1–17.
  • [6] Gil, S., Zanette, D. H., Bariloche, C. A. and Negro, R. (2006). Coevolution of agents and networks: Opinion spreading and community disconnection. Phys. Lett. A 356 89–94.
  • [7] Gross, T. and Blasius, B. (2008). Adaptive coevolutionary networks: A review. J. R. Soc. Interface 5 259–271.
  • [8] Henry, A. D., Prałat, P. and Zhang, C.-Q. (2011). Emergence of segregation in evolving social networks. Proc. Natl. Acad. Sci. USA 108 8605–8610.
  • [9] Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643–663.
  • [10] Holme, P. and Newman, M. (2006). Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74 056108.
  • [11] Kimura, D. and Hayakawa, Y. (2008). Coevolutionary networks with homophily and heterophily. Phys. Rev. E 78 016103.
  • [12] Kozma, B. and Barrat, A. (2008). Consensus formation on coevolving networks: Groups’ formation and structure. J. Phys. A 41 224020.
  • [13] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [14] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [15] Malik, N. and Mucha, P. J. (2013). Role of social environment and social clustering in spread of opinions in coevolving networks. Chaos 23 043123.
  • [16] Newman, M. E. J. (2010). Networks. An Introduction. Oxford Univ. Press, Oxford.
  • [17] Rogers, T. and Gross, T. (2013). Consensus time and conformity in the adaptive voter model. Phys. Rev. E 88 030102.
  • [18] Shi, F., Mucha, P. J. and Durrett, R. (2013). Multiopinion coevolving voter model with infinitely many phase transitions. Phys. Rev. E 88 062818.
  • [19] Skyrms, B. and Pemantle, R. (2000). A dynamic model of social network formation. Proc. Natl. Acad. Sci. USA 97 9340–9346.
  • [20] Sood, V. and Redner, S. (2005). Voter model on heterogeneous graphs. Phys. Rev. Lett. 94.
  • [21] Suchecki, K., Eguíluz, V. M. and San Miguel, M. (2005). Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev. E 72 036132.
  • [22] Vazquez, F. (2013). Opinion dynamics on coevolving networks. In Dynamics on and of Complex Networks. Vol. 2. Model. Simul. Sci. Eng. Technol. (A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly and B. Mitra, eds.) 89–107. Birkhäuser/Springer, New York.
  • [23] Vazquez, F., Eguíluz, V. M. and Miguel, M. S. (2008). Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100 108702.
  • [24] Volz, E. and Meyers, L. A. (2007). Susceptible-infected recovered epidemics in dynamic contact networks. Proc. Biol. Sci. 274 2925–2933.
  • [25] Volz, E. and Meyers, L. A. (2009). Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6 233–241.
  • [26] Yi, S. D., Baek, S. K., Zhu, C.-P. and Kim, B. J. (2013). Phase transition in a coevolving network of conformist and contrarian voters. Phys. Rev. E 87 012806.