Annals of Applied Probability

Unbiasedness of some generalized adaptive multilevel splitting algorithms

Charles-Edouard Bréhier, Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre, and Mathias Rousset

Full-text: Open access


We introduce a generalization of the Adaptive Multilevel Splitting algorithm in the discrete time dynamic setting, namely when it is applied to sample rare events associated with paths of Markov chains. We build an estimator of the rare event probability (and of any nonnormalized quantity associated with this event) which is unbiased, whatever the choice of the importance function and the number of replicas. This has practical consequences on the use of this algorithm, which are illustrated through various numerical experiments.

Article information

Ann. Appl. Probab., Volume 26, Number 6 (2016), 3559-3601.

Received: June 2015
Revised: November 2015
First available in Project Euclid: 15 December 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65C05: Monte Carlo methods 65C35: Stochastic particle methods [See also 82C80]

Rare event adaptive multilevel splitting algorithms unbiased estimator


Bréhier, Charles-Edouard; Gazeau, Maxime; Goudenège, Ludovic; Lelièvre, Tony; Rousset, Mathias. Unbiasedness of some generalized adaptive multilevel splitting algorithms. Ann. Appl. Probab. 26 (2016), no. 6, 3559--3601. doi:10.1214/16-AAP1185.

Export citation


  • [1] Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability 57. Springer, New York.
  • [2] Au, S. K. and Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Journal of Probabilistic Engineering Mechanics 16 263–277.
  • [3] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York.
  • [4] Blanchet, J., Glynn, P. and Liu, J. C. (2006). State-dependent importance sampling and large deviations. In Proceedings of the 1st International Conference on Performance Evaluation Methodolgies and Tools, Valuetools ’06 ACM, New York.
  • [5] Bréhier, C.-E. (2015). Large deviations principle for the adaptive multilevel splitting algorithm in an idealized setting. ALEA Lat. Am. J. Probab. Math. Stat. 12 717–742.
  • [6] Bréhier, C. E., Chaudru de Raynal, P. E., Lemaire, V., Panloup, F. and Rey, C. (2015). Recent advances in various fields of numerical probability. ESAIM Proceedings and Reviews 51 272–292.
  • [7] Bréhier, C.-E., Gazeau, M., Goudenège, L., Lelièvre, T. and Rousset, M. (2015). Unbiasedness of some generalized adaptive multilevel splitting algorithms. Preprint. Available at arXiv:1505.02674.
  • [8] Bréhier, C.-E., Gazeau, M., Goudenège, L. and Rousset, M. (2015). Analysis and simulation of rare events for SPDEs. ESAIM Proceedings and Reviews 48 364–384.
  • [9] Bréhier, C.-E., Goudenège, L. and Tudela, L. (2014). Central limit theorem for adaptive multilevel splitting estimators in an idealized setting. In Monte Carlo and Quasi Monte Carlo Methods. Springer, MCQMC, Leuven, Belgium.
  • [10] Bréhier, C.-E., Lelièvre, T. and Rousset, M. (2015). Analysis of adaptive multilevel splitting algorithms in an idealized case. ESAIM Probab. Stat. 19 361–394.
  • [11] Bucklew, J. A. (2004). Introduction to Rare Event Simulation. Springer, New York.
  • [12] Caron, V., Guyader, A., Munoz Zuniga, M. and Tuffin, B. (2014). Some recent results in rare event estimation. In Journées MAS 2012. ESAIM Proc. 44 239–259. EDP Sci., Les Ulis.
  • [13] Cérou, F., Del Moral, P., Furon, T. and Guyader, A. (2012). Sequential Monte Carlo for rare event estimation. Stat. Comput. 22 795–808.
  • [14] Cérou, F., Del Moral, P., LeGland, F. and Lezaud, P. (2006). Genetic genealogical models in rare event analysis. ALEA Lat. Am. J. Probab. Math. Stat. 1 181–203.
  • [15] Cérou, F. and Guyader, A. (2007). Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25 417–443.
  • [16] Cérou, F. and Guyader, A. (2016). Fluctuations analysis of adaptive multilevel splitting. Ann. Appl. Probab. 26 3319–3380.
  • [17] Cérou, F., Guyader, A., Lelièvre, T. and Pommier, D. (2011). A multiple replica approach to simulate reactive trajectories. J. Chem. Phys. 134 054108 (16 p.).
  • [18] Dean, T. and Dupuis, P. (2009). Splitting for rare event simulation: A large deviation approach to design and analysis. Stochastic Process. Appl. 119 562–587.
  • [19] Del Moral, P. (2004). Feynman–Kac Formulae. Springer, New York.
  • [20] Del Moral, P., Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 411–436.
  • [21] Del Moral, P. and Garnier, J. (2005). Genealogical particle analysis of rare events. Ann. Appl. Probab. 15 2496–2534.
  • [22] Dupuis, P. and Wang, H. (2004). Importance sampling, large deviations, and differential games. Stoch. Stoch. Rep. 76 481–508.
  • [23] Garvels, M. J. J., Kroese, D. P. and van Ommeren, J. C. W. (2002). On the importance function in splitting simulation. European Transactions on Telecom-Munications 13 363–371.
  • [24] Glasserman, P., Heidelberger, P., Shahabuddin, P. and Zajic, T. (1998). A large deviations perspective on the efficiency of multilevel splitting. IEEE Trans. Automat. Control 43 1666–1679.
  • [25] Glasserman, P., Heidelberger, P., Shahabuddin, P. and Zajic, T. (1999). Multilevel splitting for estimating rare event probabilities. Oper. Res. 47 585–600.
  • [26] Glasserman, P. and Wang, Y. (1997). Counterexamples in importance sampling for large deviations probabilities. Ann. Appl. Probab. 7 731–746.
  • [27] Guyader, A., Hengartner, N. and Matzner-Løber, E. (2011). Simulation and estimation of extreme quantiles and extreme probabilities. Appl. Math. Optim. 64 171–196.
  • [28] Hammersley, J. M. and Handscomb, D. C. (1965). Monte Carlo Methods. Methuen, London.
  • [29] Johansen, A. M., Del Moral, P. and Doucet, A. (2006). Sequential Monte Carlo samplers for rare events. In Proceedings of the 6th International Workshop on Rare Event Simulation (RESIM 2006) 256–267, Bamberg.
  • [30] Kahn, H. and Harris, T. E. (1951). Estimation of particle transmission by random sampling. National Bureau of Standards 12 27–30.
  • [31] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York.
  • [32] Lagnoux-Renaudie, A. (2008). Effective branching splitting method under cost constraint. Stochastic Process. Appl. 118 1820–1851.
  • [33] Lagnoux-Renaudie, A. (2009). A two-step branching splitting model under cost constraint for rare event analysis. J. Appl. Probab. 46 429–452.
  • [34] Metzner, P., Schütte, C. and Vanden-Eijnden, E. (2006). Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125 084110. Available at
  • [35] Park, S., Sener, M. K., Lu, D. and Schulten, K. (2003). Reaction paths based on mean first-passage times. J. Chem. Phys. 119 1313–1319.
  • [36] Rolland, J. and Simonnet, E. (2015). Statistical behaviour of adaptive multilevel splitting algorithms in simple models. J. Comput. Phys. 283 541–558.
  • [37] Rosenbluth, M. N. and Rosenbluth, A. W. (1955). Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23 356–359.
  • [38] Rubino, G. and Tuffin, B. (2009). Introduction to rare event simulation. In Rare Event Simulation Using Monte Carlo Methods 1–13. Wiley, Chichester.
  • [39] Shiryayev, A. N. (1984). Probability. Graduate Texts in Mathematics 95. Springer, New York.
  • [40] Simonnet, E. (2014). Combinatorial analysis of the adaptive last particle method. Stat. Comput. 26 211–230.
  • [41] Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian Anal. 1 833–859 (electronic).
  • [42] Vanden-Eijnden, E. and Weare, J. (2012). Rare event simulation of small noise diffusions. Comm. Pure Appl. Math. 65 1770–1803.
  • [43] Villén-Altamirano, M. and Villén-Altamirano RESTART, J. (1991). A method for accelerating rare events simulations. In Proceeding of the Thirteenth International Teletraffic Congress, Volume Copenhagen, Denmark, June 1926 of Queueing, Performance and Control in ATM: ITC-13 Workshops 71–76. North-Holland, Amsterdam.
  • [44] Walter, C. Moving particles: A parallel optimal multilevel splitting method with applications in quantiles estimation and meta-model-based algorithms. Struct. Saf. 55 10–25.