The Annals of Applied Probability

Almost optimal sparsification of random geometric graphs

Nicolas Broutin, Luc Devroye, and Gábor Lugosi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A random geometric irrigation graph $\Gamma_{n}(r_{n},\xi)$ has $n$ vertices identified by $n$ independent uniformly distributed points $X_{1},\ldots,X_{n}$ in the unit square $[0,1]^{2}$. Each point $X_{i}$ selects $\xi_{i}$ neighbors at random, without replacement, among those points $X_{j}$ ($j\neq i$) for which $\Vert X_{i}-X_{j}\Vert <r_{n}$, and the selected vertices are connected to $X_{i}$ by an edge. The number $\xi_{i}$ of the neighbors is an integer-valued random variable, chosen independently with identical distribution for each $X_{i}$ such that $\xi_{i}$ satisfies $\xi_{i}\ge1$. We prove that when $r_{n}=\gamma_{n}\sqrt{\log n/n}$ for $\gamma_{n}\to\infty$ with $\gamma_{n}=o(n^{1/6}/\log^{5/6}n)$, the random geometric irrigation graph experiences explosive percolation in the sense that if ${\mathbf{E} \xi_{i}=1}$, then the largest connected component has $o(n)$ vertices but if $\mathbf{E} \xi_{i}>1$, then the number of vertices of the largest connected component is, with high probability, $n-o(n)$. This offers a natural noncentralized sparsification of a random geometric graph that is mostly connected.

Article information

Ann. Appl. Probab., Volume 26, Number 5 (2016), 3078-3109.

Received: November 2014
Revised: September 2015
First available in Project Euclid: 19 October 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60C05: Combinatorial probability 05C80: Random graphs [See also 60B20]

Random geometric graph connectivity irrigation graph


Broutin, Nicolas; Devroye, Luc; Lugosi, Gábor. Almost optimal sparsification of random geometric graphs. Ann. Appl. Probab. 26 (2016), no. 5, 3078--3109. doi:10.1214/15-AAP1170.

Export citation


  • [1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York.
  • [2] Bender, E. A. (1974). Asymptotic methods in enumeration. SIAM Rev. 16 485–515.
  • [3] Bender, E. A. (1975). An asymptotic expansion for the coefficients of some formal power series. J. Lond. Math. Soc. (2) 9 451–458.
  • [4] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.
  • [5] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford Univ. Press, Oxford.
  • [6] Broutin, N., Devroye, L., Fraiman, N. and Lugosi, G. (2014). Connectivity threshold of Bluetooth graphs. Random Structures Algorithms 44 45–66.
  • [7] Broutin, N., Devroye, L. and Lugosi, G. (2015). Connectivity of sparse Bluetooth networks. Electron. Commun. Probab. 20 Art. ID 48.
  • [8] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 493–507.
  • [9] Crescenzi, P., Nocentini, C., Pietracaprina, A. and Pucci, G. (2009). On the connectivity of Bluetooth-based ad hoc networks. Concurrency and Computation: Practice and Experience 21 875–887.
  • [10] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
  • [11] Deuschel, J.-D. and Pisztora, A. (1996). Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 467–482.
  • [12] Dubhashi, D., Häggström, O., Mambrini, G., Panconesi, A. and Petrioli, C. (2007). Blue pleiades, a new solution for device discovery and scatternet formation in multi-hop Bluetooth networks. Wireless Networks 13 107–125.
  • [13] Dubhashi, D., Johansson, C., Häggström, O., Panconesi, A. and Sozio, M. (2005). Irrigating ad hoc networks in constant time. In Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures 106–115. ACM, New York.
  • [14] Einmahl, U. (1989). Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivariate Anal. 28 20–68.
  • [15] Fenner, T. I. and Frieze, A. M. (1982). On the connectivity of random $m$-orientable graphs and digraphs. Combinatorica 2 347–359.
  • [16] Ferraguto, F., Mambrini, G., Panconesi, A. and Petrioli, C. (2004). A new approach to device discovery and scatternet formation in Bluetooth networks. In Proceedings of the 18th International Parallel and Distributed Processing Symposium.
  • [17] Flajolet, P. and Odlyzko, A. M. (1990). Random mapping statistics. In Advances in Cryptology—EUROCRYPT ’89 (Houthalen, 1989). Lecture Notes in Computer Science 434 329–354. Springer, Berlin.
  • [18] Gilbert, E. N. (1961). Random plane networks. J. Soc. Indust. Appl. Math. 9 533–543.
  • [19] Häggström, O. and Meester, R. (1996). Nearest neighbor and hard sphere models in continuum percolation. Random Structures Algorithms 9 295–315.
  • [20] Hammersley, J. M. (1980). A generalization of McDiarmid’s theorem for mixed Bernoulli percolation. Math. Proc. Cambridge Philos. Soc. 88 167–170.
  • [21] Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. Wiley-Interscience, New York.
  • [22] Kolchin, V. F. (1986). Random Mappings. Optimization Software, Inc., Publications Division, New York.
  • [23] Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent $\mathrm{RV}$’s and the sample $\mathrm{DF}$. I. Z. Wahrsch. Verw. Gebiete 32 111–131.
  • [24] Panagiotou, K., Spöhel, R., Steger, A. and Thomas, H. (2011). Explosive percolation in Erdős–Rényi-like random graph processes. Electron. Notes Discrete Math. 38 699–704.
  • [25] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford.
  • [26] Penrose, M. D. (1996). Continuum percolation and Euclidean minimal spanning trees in high dimensions. Ann. Appl. Probab. 6 528–544.
  • [27] Penrose, M. D. (2016). Connectivity of soft random geometric graphs. Ann. Appl. Probab. 26 986–1028.
  • [28] Pettarin, A., Pietracaprina, A. and Pucci, G. (2009). On the expansion and diameter of Bluetooth-like topologies. In Algorithms—ESA 2009. Lecture Notes in Computer Science 5757 528–539. Springer, Berlin.
  • [29] Zaitsev, A. Y. (1998). Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments. ESAIM Probab. Stat. 2 41–108 (electronic).