The Annals of Applied Probability

Hack’s law in a drainage network model: A Brownian web approach

Rahul Roy, Kumarjit Saha, and Anish Sarkar

Full-text: Open access


Hack [Studies of longitudinal stream profiles in Virginia and Maryland (1957). Report], while studying the drainage system in the Shenandoah valley and the adjacent mountains of Virginia, observed a power law relation $l\sim a^{0.6}$ between the length $l$ of a stream from its source to a divide and the area $a$ of the basin that collects the precipitation contributing to the stream as tributaries. We study the tributary structure of Howard’s drainage network model of headward growth and branching studied by Gangopadhyay, Roy and Sarkar [Ann. Appl. Probab. 14 (2004) 1242–1266]. We show that the exponent of Hack’s law is $2/3$ for Howard’s model. Our study is based on a scaling of the process whereby the limit of the watershed area of a stream is area of a Brownian excursion process. To obtain this, we define a dual of the model and show that under diffusive scaling, both the original network and its dual converge jointly to the standard Brownian web and its dual.

Article information

Ann. Appl. Probab., Volume 26, Number 3 (2016), 1807-1836.

Received: February 2015
Revised: July 2015
First available in Project Euclid: 14 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Brownian excursion Brownian meander Brownian web Hack’s law


Roy, Rahul; Saha, Kumarjit; Sarkar, Anish. Hack’s law in a drainage network model: A Brownian web approach. Ann. Appl. Probab. 26 (2016), no. 3, 1807--1836. doi:10.1214/15-AAP1134.

Export citation


  • [1] Arratia, R. (1981). Coalescing Brownian motions and the voter model on ${\mathbb{Z}}$. Unpublished partial manuscript.
  • [2] Arratia, R. A. (1979). Coalescing Brownian motions on the line. ProQuest LLC, Ann Arbor, MI. Ph.D. Thesis, Univ. of Wisconsin—Madison.
  • [3] Bolthausen, E. (1976). On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 480–485.
  • [4] Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Stat. 42 59–66.
  • [5] Coletti, C. F., Fontes, L. R. G. and Dias, E. S. (2009). Scaling limit for a drainage network model. J. Appl. Probab. 46 1184–1197.
  • [6] Durrett, R. T. and Iglehart, D. L. (1977). Functionals of Brownian meander and Brownian excursion. Ann. Probab. 5 130–135.
  • [7] Durrett, R. T., Iglehart, D. L. and Miller, D. R. (1977). Weak convergence to Brownian meander and Brownian excursion. Ann. Probab. 5 117–129.
  • [8] Ferrari, P. A., Fontes, L. R. G. and Wu, X.-Y. (2005). Two-dimensional Poisson trees converge to the Brownian web. Ann. Inst. Henri Poincaré Probab. Stat. 41 851–858.
  • [9] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2004). The Brownian web: Characterization and convergence. Ann. Probab. 32 2857–2883.
  • [10] Gangopadhyay, S., Roy, R. and Sarkar, A. (2004). Random oriented trees: A model of drainage networks. Ann. Appl. Probab. 14 1242–1266.
  • [11] Giacometti, A., Martitan, A., Rigon, R., Rinaldo, A. and Rodriguez-Iturbe, I. (1996). On Hack’s law. Water Resour. Res. 32 3367–3374.
  • [12] Gray, D. M. (1961). Interrelationships of watershed characteristics. J. Geophys. Res. 66 1215–1233.
  • [13] Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. Report, U.S. Geol. Surv. Prof. Pap. 294-B.
  • [14] Horton, R. T. (1945). Erosional development of streams and their drainage basins: Hydro-physical approach to quantitative morphology. Geol. Soc. Am. Bull. 56 275–370.
  • [15] Hurst, H. (1927). The Lake Plateau Basin of the Nile. Government Press, Cairo.
  • [16] Kaigh, W. D. (1976). An invariance principle for random walk conditioned by a late return to zero. Ann. Probab. 4 115–121.
  • [17] Langbein, W. B. (1947). Topographic characteristics of drainage basins. Report, U.S. Geol. Surv. Prof. Pap. 968-C.
  • [18] Leopold, L. B. and Langbein, W. B. (1962). The concept of entropy in landscape evolution. Report, U.S. Geol. Surv. Prof. Pap. 500-A.
  • [19] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [20] Louchard, G. and Janson, S. (2007). Tail estimates for the Brownian excursion area and other Brownian areas. Electron. J. Probab. 12 1600–1632.
  • [21] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York.
  • [22] Muller, J. E. (1973). Re-evaluation of the relationship of master streams and drainage basins: Reply. Geol. Soc. Am. Bull. 84 3127–3130.
  • [23] Newman, C. M., Ravishankar, K. and Sun, R. (2005). Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Probab. 10 21–60.
  • [24] Reimer, D. (2000). Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput. 9 27–32.
  • [25] Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modelling. Springer, New York.
  • [26] Rodriguez-Iturbe, I. and Rinaldo, A. (1997). Fractal River Basins: Chance and Self-Organization. Cambridge Univ. Press, New York.
  • [27] Roy, R., Saha, K. and Sarkar, A. (2015). Hack’s law in a drainage network model: A Brownian web approach. Preprint. Available at arXiv:1501.01382.
  • [28] Soucaliuc, F., Tóth, B. and Werner, W. (2000). Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. Henri Poincaré Probab. Stat. 36 509–545.
  • [29] Sun, R. and Swart, J. M. (2008). The Brownian net. Ann. Probab. 36 1153–1208.
  • [30] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452.