The Annals of Applied Probability

Conditioned, quasi-stationary, restricted measures and escape from metastable states

R. Fernandez, F. Manzo, F. R. Nardi, E. Scoppola, and J. Sohier

Full-text: Open access

Abstract

We study the asymptotic hitting time $\tau^{(n)}$ of a family of Markov processes $X^{(n)}$ to a target set $G^{(n)}$ when the process starts from a “trap” defined by very general properties. We give an explicit description of the law of $X^{(n)}$ conditioned to stay within the trap, and from this we deduce the exponential distribution of $\tau^{(n)}$. Our approach is very broad—it does not require reversibility, the target $G$ does not need to be a rare event and the traps and the limit on $n$ can be of very general nature—and leads to explicit bounds on the deviations of $\tau^{(n)}$ from exponentially. We provide two nontrivial examples to which our techniques directly apply.

Article information

Source
Ann. Appl. Probab., Volume 26, Number 2 (2016), 760-793.

Dates
Received: October 2014
Revised: February 2015
First available in Project Euclid: 22 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1458651819

Digital Object Identifier
doi:10.1214/15-AAP1102

Mathematical Reviews number (MathSciNet)
MR3476624

Zentralblatt MATH identifier
1339.60110

Subjects
Primary: 60J27: Continuous-time Markov processes on discrete state spaces 60J28: Applications of continuous-time Markov processes on discrete state spaces 82C05: Classical dynamic and nonequilibrium statistical mechanics (general)

Keywords
Metastability continuous time Markov chains on discrete spaces hitting times asymptotic exponential behavior

Citation

Fernandez, R.; Manzo, F.; Nardi, F. R.; Scoppola, E.; Sohier, J. Conditioned, quasi-stationary, restricted measures and escape from metastable states. Ann. Appl. Probab. 26 (2016), no. 2, 760--793. doi:10.1214/15-AAP1102. https://projecteuclid.org/euclid.aoap/1458651819


Export citation

References

  • [1] Aldous, D. J. and Brown, M. (1992). Inequalities for rare events in time-reversible Markov chains. I. In Stochastic Inequalities (Seattle, WA, 1991). Institute of Mathematical Statistics Lecture Notes—Monograph Series 22 1–16. IMS, Hayward, CA.
  • [2] Aldous, D. J. and Brown, M. (1993). Inequalities for rare events in time-reversible Markov chains. II. Stochastic Process. Appl. 44 15–25.
  • [3] Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly 93 333–348.
  • [4] Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math. 8 69–97.
  • [5] Beltrán, J. and Landim, C. (2011). Metastability of reversible finite state Markov processes. Stochastic Process. Appl. 121 1633–1677.
  • [6] Beltrán, J. and Landim, C. (2012). Tunneling and metastability of continuous time Markov chains II, the nonreversible case. J. Stat. Phys. 149 598–618.
  • [7] Benois, O., Landim, C. and Mourragui, M. (2013). Hitting times of rare events in Markov chains. J. Stat. Phys. 153 967–990.
  • [8] Bianchi, A. and Gaudillière, A. (2011). Metastable states, quasi-stationary and soft measures, mixing time asymprtotics via variational principles. Available at arXiv:1103.1143.
  • [9] Bovier, A. (2006). Metastability: A potential theoretic approach. In International Congress of Mathematicians, Vol. III 499–518. Eur. Math. Soc., Zürich.
  • [10] Bovier, A., den Hollander, F. and Spitoni, C. (2010). Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Probab. 38 661–713.
  • [11] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2000). Metastability and small eigenvalues in Markov chains. J. Phys. A 33 L447–L451.
  • [12] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2001). Metastability in stochastic dynamics of disordered mean-field models. Probab. Theory Related Fields 119 99–161.
  • [13] Caputo, P., Martinelli, F. and Toninelli, F. L. (2008). On the approach to equilibrium for a polymer with adsorption and repulsion. Electron. J. Probab. 13 213–258.
  • [14] Caputo, P., Lacoin, H., Martinelli, F., Simenhaus, F. and Toninelli, F. L. (2012). Polymer dynamics in the depinned phase: Metastability with logarithmic barriers. Probab. Theory Related Fields 153 587–641.
  • [15] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E. (1984). Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 603–634.
  • [16] Catoni, O. (1999). Simulated annealing algorithms and Markov chains with rare transitions. In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 69–119. Springer, Berlin.
  • [17] Catoni, O. and Cerf, R. (1995/1997). The exit path of a Markov chain with rare transitions. ESAIM Probab. Stat. 1 95–144 (electronic).
  • [18] Cirillo, E. N. M. and Nardi, F. R. (2003). Metastability for a stochastic dynamics with a parallel heat bath updating rule. J. Stat. Phys. 110 183–217.
  • [19] Fernandez, R., Manzo, F., Nardi, F. R. and Scoppola, E. (2014). Asymptotically exponential hitting times and metastability: A pathwise approach without reversibility. Available at arXiv:1406.2637.
  • [20] Gaudillière, A. and Landim, C. (2014). A Dirichlet principle for nonreversible Markov chains and some recurrence theorems. Probab. Theory Related Fields 158 55–89.
  • [21] Gaudillière, A. and Nardi, F. R. (2010). An upper bound for front propagation velocities inside moving populations. Braz. J. Probab. Stat. 24 256–278.
  • [22] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2009). Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119 737–774.
  • [23] Keilson, J. (1979). Markov Chain Models—Rarity and Exponentiality. Applied Mathematical Sciences 28. Springer, New York.
  • [24] Landim, C. (2014). Metastability for a nonreversible dynamics: The evolution of the condensate in totally asymmetric zero range processes. Comm. Math. Phys. 330 1–32.
  • [25] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [26] Lyons, R. and Peres, Y. (2015). Probability on Trees and Networks. Cambridge Univ. Press, Cambridge. In preparation; available at http://mypage.iu.edu/\string rdlyons.
  • [27] Manzo, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2004). On the essential features of metastability: Tunnelling time and critical configurations. J. Stat. Phys. 115 591–642.
  • [28] Oliveira, R. I. (2013). Mean field conditions for coalescing random walks. Ann. Probab. 41 3420–3461.
  • [29] Olivieri, E. and Scoppola, E. (1995). Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79 613–647.
  • [30] Olivieri, E. and Scoppola, E. (1996). Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case. J. Stat. Phys. 84 987–1041.
  • [31] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge.
  • [32] Schonmann, R. H. and Shlosman, S. B. (1998). Wulff droplets and the metastable relaxation of kinetic Ising models. Comm. Math. Phys. 194 389–462.
  • [33] Scoppola, E. (1993). Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73 83–121.
  • [34] Scoppola, E. (1994). Metastability for Markov chains: A general procedure based on renormalization group ideas. In Probability and Phase Transition (Cambridge, 1993). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 420 303–322. Kluwer Academic, Dordrecht.
  • [35] Seneta, E. (2006). Nonnegative Matrices and Markov Chains. Springer, New York. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544].
  • [36] Trouvé, A. (1992). Partially parallel simulated annealing: Low and high temperature approach of the invariant measure. In Applied Stochastic Analysis (New Brunswick, NJ, 1991). Lecture Notes in Control and Inform. Sci. 177 262–278. Springer, Berlin.