The Annals of Applied Probability

The densest subgraph problem in sparse random graphs

Venkat Anantharam and Justin Salez

Full-text: Open access

Abstract

We determine the asymptotic behavior of the maximum subgraph density of large random graphs with a prescribed degree sequence. The result applies in particular to the Erdős–Rényi model, where it settles a conjecture of Hajek [IEEE Trans. Inform. Theory 36 (1990) 1398–1414]. Our proof consists in extending the notion of balanced loads from finite graphs to their local weak limits, using unimodularity. This is a new illustration of the objective method described by Aldous and Steele [In Probability on Discrete Structures (2004) 1–72 Springer].

Article information

Source
Ann. Appl. Probab., Volume 26, Number 1 (2016), 305-327.

Dates
Received: January 2014
Revised: July 2014
First available in Project Euclid: 5 January 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1452003240

Digital Object Identifier
doi:10.1214/14-AAP1091

Mathematical Reviews number (MathSciNet)
MR3449319

Zentralblatt MATH identifier
1336.60010

Subjects
Primary: 60C05: Combinatorial probability 05C80: Random graphs [See also 60B20]
Secondary: 90B15: Network models, stochastic

Keywords
Maximum subgraph density load balancing local weak convergence objective method unimodularity pairing model

Citation

Anantharam, Venkat; Salez, Justin. The densest subgraph problem in sparse random graphs. Ann. Appl. Probab. 26 (2016), no. 1, 305--327. doi:10.1214/14-AAP1091. https://projecteuclid.org/euclid.aoap/1452003240


Export citation

References

  • [1] Agarwal, R. P., Meehan, M. and O’Regan, D. (2001). Fixed Point Theory and Applications. Cambridge Tracts in Mathematics 141. Cambridge Univ. Press, Cambridge.
  • [2] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454–1508.
  • [3] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin.
  • [4] Aldous, D. J. (2001). The $\zeta(2)$ limit in the random assignment problem. Random Structures Algorithms 18 381–418.
  • [5] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047–1110.
  • [6] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 no. 23, 13 pp. (electronic).
  • [7] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • [8] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.
  • [9] Bordenave, C. (2012). Lecture notes on random graphs and probabilistic combinatorial optimization. Available at http://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf.
  • [10] Bordenave, C., Lelarge, M. and Salez, J. (2013). Matchings on infinite graphs. Probab. Theory Related Fields 157 183–208.
  • [11] Cain, J. A., Sanders, P. and Wormald, N. (2007). The random graph threshold for $k$-orientability and a fast algorithm for optimal multiple-choice allocation. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms 469–476. ACM, New York.
  • [12] Fernholz, D. and Ramachandran, V. (2007). The $k$-orientability thresholds for $G_{n,p}$. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms 459–468. ACM, New York.
  • [13] Fountoulakis, N., Khosla, M. and Panagiotou, K. (2011). The multiple-orientability thresholds for random hypergraphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms 1222–1236. SIAM, Philadelphia, PA.
  • [14] Gamarnik, D., Nowicki, T. and Swirszcz, G. (2006). Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method. Random Structures Algorithms 28 76–106.
  • [15] Gao, P. and Wormald, N. C. (2010). Load balancing and orientability thresholds for random hypergraphs [extended abstract]. In STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing 97–103. ACM, New York.
  • [16] Hajek, B. (1990). Performance of global load balancing by local adjustment. IEEE Trans. Inform. Theory 36 1398–1414.
  • [17] Hajek, B. (1996). Balanced loads in infinite networks. Ann. Appl. Probab. 6 48–75.
  • [18] Janson, S. (2009). The probability that a random multigraph is simple. Combin. Probab. Comput. 18 205–225.
  • [19] Khandwawala, M. and Sundaresan, R. (2014). Belief propagation for optimal edge cover in the random complete graph. Ann. Appl. Probab. 24 2414–2454.
  • [20] Leconte, M., Lelarge, M. and Massoulié, L. (2012). Convergence of multivariate belief propagation, with applications to cuckoo hashing and load balancing. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms 35–46. SIAM, Philadelphia, PA.
  • [21] Lelarge, M. (2012). A new approach to the orientation of random hypergraphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms 251–264. ACM, New York.
  • [22] Łuczak, T. (1992). Sparse random graphs with a given degree sequence. In Random Graphs, Vol. 2 (Poznań, 1989). Wiley-Intersci. Publ. 165–182. Wiley, New York.
  • [23] Lyons, R. (2005). Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14 491–522.
  • [24] Salez, J. (2013). Weighted enumeration of spanning subgraphs in locally tree-like graphs. Random Structures Algorithms 43 377–397.
  • [25] Salez, J. and Shah, D. (2009). Belief propagation: An asymptotically optimal algorithm for the random assignment problem. Math. Oper. Res. 34 468–480.
  • [26] Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, Inc., Boston, MA.
  • [27] Steele, J. M. (2002). Minimal spanning trees for graphs with random edge lengths. In Mathematics and Computer Science, II (Versailles, 2002). Trends Math. 223–245. Birkhäuser, Basel.
  • [28] van der Hofstad, R. (2013). Random graphs and complex networks. Available at http://www.win.tue.nl/~rhofstad/NotesRGCN.html.