The Annals of Applied Probability

Scaling limits of spatial compartment models for chemical reaction networks

Peter Pfaffelhuber and Lea Popovic

Full-text: Open access

Abstract

We study the effects of fast spatial movement of molecules on the dynamics of chemical species in a spatially heterogeneous chemical reaction network using a compartment model. The reaction networks we consider are either single- or multi-scale. When reaction dynamics is on a single-scale, fast spatial movement has a simple effect of averaging reactions over the distribution of all the species. When reaction dynamics is on multiple scales, we show that spatial movement of molecules has different effects depending on whether the movement of each type of species is faster or slower than the effective reaction dynamics on this molecular type. We obtain results for both when the system is without and with conserved quantities, which are linear combinations of species evolving only on the slower time scale.

Article information

Source
Ann. Appl. Probab., Volume 25, Number 6 (2015), 3162-3208.

Dates
Received: February 2013
Revised: July 2014
First available in Project Euclid: 1 October 2015

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1443703772

Digital Object Identifier
doi:10.1214/14-AAP1070

Mathematical Reviews number (MathSciNet)
MR3404634

Zentralblatt MATH identifier
1329.60341

Subjects
Primary: 60J27: Continuous-time Markov processes on discrete state spaces 60J25: Continuous-time Markov processes on general state spaces
Secondary: 60F17: Functional limit theorems; invariance principles 92C45: Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [See also 80A30] 80A30: Chemical kinetics [See also 76V05, 92C45, 92E20]

Keywords
Chemical reaction network multiple time scales stochastic averaging scaling limits quasi-steady state assumption

Citation

Pfaffelhuber, Peter; Popovic, Lea. Scaling limits of spatial compartment models for chemical reaction networks. Ann. Appl. Probab. 25 (2015), no. 6, 3162--3208. doi:10.1214/14-AAP1070. https://projecteuclid.org/euclid.aoap/1443703772


Export citation

References

  • Ball, K., Kurtz, T. G., Popovic, L. and Rempala, G. (2006). Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16 1925–1961.
  • Blount, D. (1994). Density-dependent limits for a nonlinear reaction–diffusion model. Ann. Probab. 22 2040–2070.
  • Burrage, K., Burrage, P. M., Leier, A., Marquez-Lago, T. and Nicolau, D. V. Jr. (2011). Stochastic simulation for spatial modelling of dynamic processes in a living cell. In Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology 43–62. Springer, New York.
  • Drawert, B., Lawson, M. J., Petzold, L. and Khammash, M. (2010). The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction–diffusion master equation. Journal of Chemical Physics 132 074101.
  • E, W., Liu, D. and Vanden-Eijnden, E. (2007). Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J. Comput. Phys. 221 158–180.
  • Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002). Stochastic gene expression in a single cell. Science Signalling 297 1183–1186.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • Evans, S. N., Ralph, P. L., Schreiber, S. J. and Sen, A. (2013). Stochastic population growth in spatially heterogeneous environments. J. Math. Biol. 66 423–476.
  • Fange, D., Berg, O. G., Sjoberg, P. and Elf, J. (2010). Stochastic reaction–diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. USA 107 19820–19825.
  • Franz, U., Liebscher, V. and Zeiser, S. (2012). Piecewise-deterministic Markov processes as limits of Markov jump processes. Adv. in Appl. Probab. 44 729–748.
  • Howard, M. and Rutenberg, A. D. (2003). Pattern formation inside bacteria: Fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102.
  • Jeschke, M., Ewald, R. and Uhrmacher, A. M. (2011). Exploring the performance of spatial stochastic simulation algorithms. J. Comput. Phys. 230 2562–2574.
  • Kang, H.-W. (2012). A multiscale approximation in a heat shock response model of E. coli. BMC Systems Biology 21 143.
  • Kang, H.-W. and Kurtz, T. G. (2013). Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23 529–583.
  • Kang, H.-W., Kurtz, T. G. and Popovic, L. (2014). Central limit theorems and diffusion approximations for multiscale Markov chain models. Ann. Appl. Probab. 24 721–759.
  • Kotelenez, P. (1988). High density limit theorems for nonlinear chemical reactions with diffusion. Probab. Theory Related Fields 78 11–37.
  • Kou, S. C. (2008). Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2 501–535.
  • Kouritzin, M. A. and Long, H. (2002). Convergence of Markov chain approximations to stochastic reaction–diffusion equations. Ann. Appl. Probab. 12 1039–1070.
  • Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7 49–58.
  • Kurtz, T. G. (1981). Approximation of Population Processes. CBMS-NSF Regional Conference Series in Applied Mathematics 36. SIAM, Philadelphia, PA.
  • Kurtz, T. G. (1992). Averaging for martingale problems and stochastic approximation. In Applied Stochastic Analysis (New Brunswick, NJ, 1991). Lecture Notes in Control and Inform. Sci. 177 186–209. Springer, Berlin.
  • McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94 814–819.
  • Pfaffelhuber, P. and Popovic, L. (2014). How spatial heterogeneity shapes multi-scale biochemical reaction network dynamics. Journal of the Royal Society Interface 12 20141106.
  • Srivastava, R., Peterson, M. and Bentley, W. (2001). Stochastic kinetic analysis of the escherichia coli stress circuit using sigma(32)-targeted antisense. Biotechnology and Bioengineering 75 120–129.
  • Takahashi, K., Tanase-Nicola, S. and Ten Wolde, P. R. (2010). Spatio-temporal correlations can drastically change the response of a mapk pathway. Proc. Natl. Acad. Sci. USA 107 2473–2478.