The Annals of Applied Probability

Semi-discrete semi-linear parabolic SPDEs

Nicos Georgiou, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu

Full-text: Open access

Abstract

Consider an infinite system

\[\partial_{t}u_{t}(x)=(\mathscr{L}u_{t})(x)+\sigma(u_{t}(x))\partial_{t}B_{t}(x)\] of interacting Itô diffusions, started at a nonnegative deterministic bounded initial profile. We study local and global features of the solution under standard regularity assumptions on the nonlinearity $\sigma$. We will show that, locally in time, the solution behaves as a collection of independent diffusions. We prove also that the $k$th moment Lyapunov exponent is frequently of sharp order $k^{2}$, in contrast to the continuous-space stochastic heat equation whose $k$th moment Lyapunov exponent can be of sharp order $k^{3}$. When the underlying walk is transient and the noise level is sufficiently low, we prove also that the solution is a.s. uniformly dissipative provided that the initial profile is in $\ell^{1}(\mathbf{Z}^{d})$.

Article information

Source
Ann. Appl. Probab., Volume 25, Number 5 (2015), 2959-3006.

Dates
Received: November 2013
Revised: September 2014
First available in Project Euclid: 30 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1438261057

Digital Object Identifier
doi:10.1214/14-AAP1065

Mathematical Reviews number (MathSciNet)
MR3375892

Zentralblatt MATH identifier
1325.60108

Subjects
Primary: 60J60: Diffusion processes [See also 58J65] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments
Secondary: 47B80: Random operators [See also 47H40, 60H25] 60H25: Random operators and equations [See also 47B80]

Keywords
The stochastic heat equation semi-discrete stochastic heat equation discrete space parabolic Anderson model Lyapunov exponents dissipative behavior comparison principle interacting diffusions BDG inequality

Citation

Georgiou, Nicos; Joseph, Mathew; Khoshnevisan, Davar; Shiu, Shang-Yuan. Semi-discrete semi-linear parabolic SPDEs. Ann. Appl. Probab. 25 (2015), no. 5, 2959--3006. doi:10.1214/14-AAP1065. https://projecteuclid.org/euclid.aoap/1438261057


Export citation

References

  • [1] Abramowitz, M. and Stegun, I. A., eds. (1992). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
  • [2] Aizenman, M. and Warzel, S. (2011). Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder. European Physics Letters 96 37004.
  • [3] Amir, G., Corwin, I. and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm. Pure Appl. Math. 64 466–537.
  • [4] Anderson, W. J. (1972). Local behaviour of solutions of stochastic integral equations. Trans. Amer. Math. Soc. 164 309–321.
  • [5] Balázs, M., Quastel, J. and Seppäläinen, T. (2011). Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Amer. Math. Soc. 24 683–708.
  • [6] Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78 1377–1401.
  • [7] Borodin, A. and Corwin, I. (2014). Moments and Lyapunov exponents for the parabolic Anderson model. Ann. Appl. Probab. 24 1172–1198.
  • [8] Burkholder, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494–1504.
  • [9] Burkholder, D. L., Davis, B. J. and Gundy, R. F. (1972). Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 223–240. Univ. California Press, Berkeley, CA.
  • [10] Burkholder, D. L. and Gundy, R. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 249–304.
  • [11] Carlen, E. and Krée, P. (1991). $L^{p}$ estimates on iterated stochastic integrals. Ann. Probab. 19 354–368.
  • [12] Carmona, R., Koralov, L. and Molchanov, S. (2001). Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stoch. Equ. 9 77–86.
  • [13] Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 viii+125.
  • [14] Chung, K. L. and Fuchs, W. H. J. (1951). On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. 1951 12.
  • [15] Conus, D. (2013). Moments for the parabolic Anderson model: On a result by Hu and Nualart. Commun. Stoch. Anal. 7 125–152.
  • [16] Conus, D., Joseph, M. and Khoshnevisan, D. (2012). Correlation-length bounds, and estimates for intermittent islands in parabolic SPDEs. Electron. J. Probab. 17 15.
  • [17] Conus, D., Joseph, M. and Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann. Probab. 41 2225–2260.
  • [18] Cox, J. T., Fleischmann, K. and Greven, A. (1996). Comparison of interacting diffusions and an application to their ergodic theory. Probab. Theory Related Fields 105 513–528.
  • [19] Cox, J. T. and Greven, A. (1994). Ergodic theorems for infinite systems of locally interacting diffusions. Ann. Probab. 22 833–853.
  • [20] Cranston, M., Gauthier, D. and Mountford, T. S. (2010). On large deviations for the parabolic Anderson model. Probab. Theory Related Fields 147 349–378.
  • [21] Cranston, M. and Molchanov, S. (2007). Quenched to annealed transition in the parabolic Anderson problem. Probab. Theory Related Fields 138 177–193.
  • [22] Cranston, M., Mountford, T. S. and Shiga, T. (2002). Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71 163–188.
  • [23] Davis, B. (1976). On the $L^{p}$ norms of stochastic integrals and other martingales. Duke Math. J. 43 697–704.
  • [24] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York.
  • [25] Foondun, M. and Khoshnevisan, D. (2009). Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 548–568.
  • [26] Funaki, T. (1983). Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89 129–193.
  • [27] Geiß, C. and Manthey, R. (1994). Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stochastic Process. Appl. 53 23–35.
  • [28] Gnedenko, B. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, MA.
  • [29] Greven, A. and den Hollander, F. (2007). Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 1250–1306.
  • [30] Iwata, K. (1987). An infinite-dimensional stochastic differential equation with state space $C(\mathbf{R})$. Probab. Theory Related Fields 74 141–159.
  • [31] Khoshnevisan, D. (2014). Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics 119. Amer. Math. Soc., Providence, RI.
  • [32] Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 225–245.
  • [33] Mueller, C. and Nualart, D. (2008). Regularity of the density for the stochastic heat equation. Electron. J. Probab. 13 2248–2258.
  • [34] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1905. Springer, Berlin.
  • [35] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften 293. Springer, Berlin.
  • [36] Shiga, T. (1992). Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems. Osaka J. Math. 29 789–807.
  • [37] Shiga, T. and Shimizu, A. (1980). Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 395–416.