The Annals of Applied Probability

Second-order BSDEs with jumps: Formulation and uniqueness

Nabil Kazi-Tani, Dylan Possamaï, and Chao Zhou

Full-text: Open access


In this paper, we define a notion of second-order backward stochastic differential equations with jumps (2BSDEJs for short), which generalizes the continuous case considered by Soner, Touzi and Zhang [ Probab. Theory Related Fields 153 (2012) 149–190]. However, on the contrary to their formulation, where they can define pathwise the density of quadratic variation of the canonical process, in our setting, the compensator of the jump measure associated to the jumps of the canonical process, which is the counterpart of the density in the continuous case, depends on the underlying probability measures. Then in our formulation of 2BSDEJs, the generator of the 2BSDEJs depends also on the underlying probability measures through the compensator. But the solution to the 2BSDEJs can still be defined universally. Moreover, we obtain a representation of the $Y$ component of a solution of a 2BSDEJ as a supremum of solutions of standard backward SDEs with jumps, which ensures the uniqueness of the solution.

Article information

Ann. Appl. Probab., Volume 25, Number 5 (2015), 2867-2908.

Received: May 2013
Revised: January 2014
First available in Project Euclid: 30 July 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 60H30: Applications of stochastic analysis (to PDE, etc.)

Second-order backward stochastic differential equation backward stochastic differential equation with jumps mutually singular measures quasi-sure analysis


Kazi-Tani, Nabil; Possamaï, Dylan; Zhou, Chao. Second-order BSDEs with jumps: Formulation and uniqueness. Ann. Appl. Probab. 25 (2015), no. 5, 2867--2908. doi:10.1214/14-AAP1063.

Export citation


  • [1] Avellaneda, M., Lévy, A. and Paras, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2 73–88.
  • [2] Barles, G., Buckdahn, R. and Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60 57–83.
  • [3] Becherer, D. (2006). Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16 2027–2054.
  • [4] Bichteler, K. (1981). Stochastic integration and $L^{p}$-theory of semimartingales. Ann. Probab. 9 49–89.
  • [5] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley, New York.
  • [6] Bion-Nadal, J. and Kervarec, M. (2012). Risk measuring under model uncertainty. Ann. Appl. Probab. 22 213–238.
  • [7] Bismut, J.-M. (1973). Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 384–404.
  • [8] Bouchard, B. and Touzi, N. (2011). Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim. 49 948–962.
  • [9] Cohen, S. N. (2012). Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces. Electron. J. Probab. 17 no. 62, 15.
  • [10] Crépey, S. and Matoussi, A. (2008). Reflected and doubly reflected BSDEs with jumps: A priori estimates and comparison. Ann. Appl. Probab. 18 2041–2069.
  • [11] Denis, L., Hu, M. and Peng, S. (2011). Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths. Potential Anal. 34 139–161.
  • [12] Denis, L. and Martini, C. (2006). A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16 827–852.
  • [13] El Karoui, N. (1981). Les aspects probalilistes du contrôle stochastique. In Ecole D’Eté de Probabilités de Saint-Flour IX-1979. Lecture Notes in Math. 876 73–238.
  • [14] El Karoui, N., Hu̇u̇ Nguyen, D. and Jeanblanc-Picqué, M. (1987). Compactification methods in the control of degenerate diffusions: Existence of an optimal control. Stochastics 20 169–219.
  • [15] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. C. (1997). Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Appl. Probab. 25 702–737.
  • [16] Fujiwara, T. and Kunita, H. (1985). Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25 71–106.
  • [17] Hu, M. and Peng, S. (2009). G-Lévy processes under sublinear expectations. Preprint. Available at arXiv:0911.3533.
  • [18] Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales. Springer, Berlin.
  • [19] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.
  • [20] Karandikar, R. L. (1995). On pathwise stochastic integration. Stochastic Process. Appl. 57 11–18.
  • [21] Kazi-Tani, N., Possamaï, D. and Zhou, C. (2012). Second-order BSDEs with jumps: Existence and probabilistic representation for fully-nonlinear PIDEs. Preprint. Available at arXiv:1208.0763.
  • [22] Lépingle, D. and Mémin, J. (1978). Sur l’intégrabilité uniforme des martingales exponentielles. Z. Wahrsch. Verw. Gebiete 42 175–203.
  • [23] Lépingle, D. and Mémin, J. (1978). Intégrabilité uniforme et dans $L^{r}$ des martingales exponentielles. In Seminar on Probability, Rennes 1978 (French) Exp. No. 9, 14. Univ. Rennes, Rennes.
  • [24] Mémin, J. (1978). Décompositions multiplicatives de semimartingales exponentielles et applications. In Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977). 35–46. Springer, Berlin.
  • [25] Neufeld, A. and Nutz, M. (2014). Measurability of semimartingale characteristics with respect to the probability law. Stochastic Process. Appl. 124 3819–3845.
  • [26] Neufeld, A. and Nutz, M. (2014). Nonlinear Lévy processes and their characteristics. Preprint. Available at arXiv:1401.7253.
  • [27] Neveu, J. (1975). Discrete-Parameter Martingales, Revised ed. North-Holland, Amsterdam.
  • [28] Nutz, M. (2012). Pathwise construction of stochastic integrals. Electron. Commun. Probab. 17 no. 24, 7.
  • [29] Nutz, M. (2012). A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17 no. 23, 23.
  • [30] Pardoux, É. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55–61.
  • [31] Peng, S. (2007). $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type. In Stochastic Analysis and Applications. Abel Symp. 2 541–567. Springer, Berlin.
  • [32] Peng, S. (2010). Nonlinear expectations and stochastic calculus under uncertainty. Preprint. Available at arXiv:1002.4546.
  • [33] Protter, P. (2000). Stochastic Integration and Differential Equations. Springer, Berlin.
  • [34] Royer, M. (2006). Backward stochastic differential equations with jumps and related non-linear expectations. Stochastic Process. Appl. 116 1358–1376.
  • [35] Soner, H. M., Touzi, N. and Zhang, J. (2011). Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16 1844–1879.
  • [36] Soner, H. M., Touzi, N. and Zhang, J. (2012). Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153 149–190.
  • [37] Tang, S. J. and Li, X. J. (1994). Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 1447–1475.