The Annals of Applied Probability

The set of solutions of random XORSAT formulae

Morteza Ibrahimi, Yash Kanoria, Matt Kraning, and Andrea Montanari

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The XOR-satisfiability (XORSAT) problem requires finding an assignment of $n$ Boolean variables that satisfy $m$ exclusive OR (XOR) clauses, whereby each clause constrains a subset of the variables. We consider random XORSAT instances, drawn uniformly at random from the ensemble of formulae containing $n$ variables and $m$ clauses of size $k$. This model presents several structural similarities to other ensembles of constraint satisfaction problems, such as $k$-satisfiability ($k$-SAT), hypergraph bicoloring and graph coloring. For many of these ensembles, as the number of constraints per variable grows, the set of solutions shatters into an exponential number of well-separated components. This phenomenon appears to be related to the difficulty of solving random instances of such problems.

We prove a complete characterization of this clustering phase transition for random $k$-XORSAT. In particular, we prove that the clustering threshold is sharp and determine its exact location. We prove that the set of solutions has large conductance below this threshold and that each of the clusters has large conductance above the same threshold.

Our proof constructs a very sparse basis for the set of solutions (or the subset within a cluster). This construction is intimately tied to the construction of specific subgraphs of the hypergraph associated with an instance of $k$-XORSAT. In order to study such subgraphs, we establish novel local weak convergence results for them.

Article information

Source
Ann. Appl. Probab. Volume 25, Number 5 (2015), 2743-2808.

Dates
Received: February 2012
Revised: August 2014
First available in Project Euclid: 30 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1438261053

Digital Object Identifier
doi:10.1214/14-AAP1060

Mathematical Reviews number (MathSciNet)
MR3375888

Zentralblatt MATH identifier
1341.68061

Subjects
Primary: 68Q87: Probability in computer science (algorithm analysis, random structures, phase transitions, etc.) [See also 68W20, 68W40]
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
Random constraint satisfaction problem clustering of solutions phase transition random graph local weak convergence belief propagation

Citation

Ibrahimi, Morteza; Kanoria, Yash; Kraning, Matt; Montanari, Andrea. The set of solutions of random XORSAT formulae. Ann. Appl. Probab. 25 (2015), no. 5, 2743--2808. doi:10.1214/14-AAP1060. https://projecteuclid.org/euclid.aoap/1438261053


Export citation

References

  • [1] Achlioptas, D. and Coja-Oghlan, A. (2008). Algorithmic barriers from phase transitions. In Proc. of the 49th IEEE Symposium on Foundations of Computer Science, FOCS 793–802. IEEE Computer Society, Los Alamitos, CA.
  • [2] Achlioptas, D., Coja-Oghlan, A. and Ricci-Tersenghi, F. (2011). On the solution-space geometry of random constraint satisfaction problems. Random Structures Algorithms 38 251–268.
  • [3] Achlioptas, D., Naor, A. and Peres, Y. (2005). Rigorous location of phase transitions in hard optimization problems. Nature 435 759–764.
  • [4] Achlioptas, D. and Peres, Y. (2004). The threshold for random $k$-SAT is $2^{k}\log2-O(k)$. J. Amer. Math. Soc. 17 947–973 (electronic).
  • [5] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454–1508.
  • [6] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures (H. Kesten, ed.). Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin.
  • [7] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
  • [8] Balogh, J., Peres, Y. and Pete, G. (2006). Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 715–730.
  • [9] Benjamini, I. and Schramm, O. (1996). Percolation beyond $\mathbf{Z}_{d}$, many questions and a few answers. Electron. Commun. Probab. 1 71–82 (electronic).
  • [10] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.
  • [11] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.
  • [12] Cocco, S., Dubois, O., Mandler, J. and Monasson, R. (2003). Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices. Phys. Rev. Lett. 90 047205.
  • [13] Coja-Oghlan, A. (2010). A better algorithm for random $k$-SAT. SIAM J. Comput. 39 2823–2864.
  • [14] Dembo, A. and Montanari, A. (2008). Finite size scaling for the core of large random hypergraphs. Ann. Appl. Probab. 18 1993–2040.
  • [15] Dembo, A. and Montanari, A. (2010). Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24 137–211.
  • [16] Dembo, A. and Montanari, A. (2010). Ising models on locally tree-like graphs. Ann. Appl. Probab. 20 565–592.
  • [17] Dembo, A., Montanari, A. and Sun, N. (2013). Factor models on locally tree-like graphs. Ann. Probab. 41 4162–4213.
  • [18] Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R. and Rink, M. (2010). Tight thresholds for Cuckoo Hashing via XORSAT. In Proc. of the 37th International Colloquium on Automata, Languages and Programming, ICALP. Lecture Notes in Computer Science 6198 213–225. Springer, Berlin.
  • [19] Dubhashi, D. P. and Panconesi, A. (2009). Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge Univ. Press, Cambridge.
  • [20] Dubois, O. and Mandler, J. (2002). The 3-XORSAT threshold. In Proc. of the 43rd IEEE Symposium on Foundations of Computer Science, FOCS 769–778. IEEE Computer Society, Los Alamitos, CA.
  • [21] Friedgut, E. (1999). Sharp thresholds of graph properties, and the $k$-sat problem. J. Amer. Math. Soc. 12 1017–1054.
  • [22] Hall, P. (1982). Rates of Convergence in the Central Limit Theorem. Research Notes in Mathematics 62. Pitman, London.
  • [23] Hoory, S., Linial, N. and Wigderson, A. (2006). Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 439–561 (electronic).
  • [24] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [25] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik, D. A., te Riele, H., Timofeev, A. and Zimmermann, P. (2010). Factorization of a 768-bit RSA modulus. In Advances in Cryptology—CRYPTO 2010. Lecture Notes in Computer Science 6223 333–350. Springer, Berlin.
  • [26] Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G. and Zdeborová, L. (2007). Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104 10318–10323 (electronic).
  • [27] Luby, M., Mitzenmacher, M., Shokrollahi, A. and Spielman, D. A. (1998). Analysis of low density codes and improved designs using irregular graphs. In Proc. of the 30th ACM Symposium on Theory of Computing, STOC 249–258. ACM, New York.
  • [28] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A. and Spielman, D. A. (2001). Efficient erasure correcting codes. IEEE Trans. Inform. Theory 47 569–584.
  • [29] Mézard, M. and Montanari, A. (2009). Information, Physics, and Computation. Oxford Univ. Press, Oxford.
  • [30] Mézard, M., Parisi, G. and Zecchina, R. (2003). Analytic and algorithmic solution of random satisfiability problems. Science 297 812–815.
  • [31] Mézard, M., Ricci-Tersenghi, F. and Zecchina, R. (2003). Two solutions to diluted $p$-spin models and XORSAT problems. J. Stat. Phys. 111 505–533.
  • [32] Molloy, M. (2005). Cores in random hypergraphs and Boolean formulas. Random Structures Algorithms 27 124–135.
  • [33] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B. and Troyansky, L. (1999). Determining computational complexity from characteristic “phase transitions”. Nature 400 133–137.
  • [34] Montanari, A. (2013). Statistical mechanics and algorithms on sparse and random graphs. In Lectures on Probability Theory and Statistics. Saint-Flour.
  • [35] Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant $k$-core in a random graph. J. Combin. Theory Ser. B 67 111–151.
  • [36] Richardson, T. and Urbanke, R. (2008). Modern Coding Theory. Cambridge Univ. Press, Cambridge.
  • [37] Wormald, N. C. (1981). The asymptotic distribution of short cycles in random regular graphs. J. Combin. Theory Ser. B 31 168–182.
  • [38] Wormald, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury) (J. D. Lamb and D. A. Preece, eds.). London Mathematical Society Lecture Note Series 267 239–298. Cambridge Univ. Press, Cambridge.