The Annals of Applied Probability

Surface order scaling in stochastic geometry

J. E. Yukich

Full-text: Open access

Abstract

Let ${{ \mathcal{P}}}_{{\lambda}}:={{ \mathcal{P}}}_{{\lambda}{\kappa}}$ denote a Poisson point process of intensity ${\lambda}{\kappa}$ on $[0,1]^{d}$, $d\geq2$, with ${\kappa}$ a bounded density on $[0,1]^{d}$ and ${\lambda}\in(0,\infty)$. Given a closed subset ${ \mathcal{M}}\subset[0,1]^{d}$ of Hausdorff dimension $(d-1)$, we consider general statistics $\sum_{x\in{{ \mathcal{P}}}_{{\lambda}}}\xi(x,{{ \mathcal{P}}}_{{\lambda}},{ \mathcal{M}})$, where the score function $\xi$ vanishes unless the input $x$ is close to ${ \mathcal{M}}$ and where $\xi$ satisfies a weak spatial dependency condition. We give a rate of normal convergence for the rescaled statistics $\sum_{x\in{{ \mathcal{P}}}_{{\lambda}}}\xi({\lambda}^{1/d}x,{\lambda}^{1/d}{{ \mathcal{P}}}_{{\lambda}},{\lambda}^{1/d}{ \mathcal{M}})$ as ${\lambda}\to\infty$. When ${ \mathcal{M}}$ is of class $C^{2}$, we obtain weak laws of large numbers and variance asymptotics for these statistics, showing that growth is surface order, that is, of order $\mathrm{Vol} ({\lambda}^{1/d}{ \mathcal{M}})$. We use the general results to deduce variance asymptotics and central limit theorems for statistics arising in stochastic geometry, including Poisson–Voronoi volume and surface area estimators, answering questions in Heveling and Reitzner [Ann. Appl. Probab. 19 (2009) 719–736] and Reitzner, Spodarev and Zaporozhets [Adv. in Appl. Probab. 44 (2012) 938–953]. The general results also yield the limit theory for the number of maximal points in a sample.

Article information

Source
Ann. Appl. Probab., Volume 25, Number 1 (2015), 177-210.

Dates
First available in Project Euclid: 16 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1418740183

Digital Object Identifier
doi:10.1214/13-AAP992

Mathematical Reviews number (MathSciNet)
MR3297770

Zentralblatt MATH identifier
1356.60041

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Poisson–Voronoi tessellation Poisson–Voronoi volume estimator Poisson–Voronoi surface area estimator maximal points

Citation

Yukich, J. E. Surface order scaling in stochastic geometry. Ann. Appl. Probab. 25 (2015), no. 1, 177--210. doi:10.1214/13-AAP992. https://projecteuclid.org/euclid.aoap/1418740183


Export citation

References

  • [1] Baccelli, F., Tchoumatchenko, K. and Zuyev, S. (2000). Markov paths on the Poisson–Delaunay graph with applications to routing in mobile networks. Adv. in Appl. Probab. 32 1–18.
  • [2] Bai, Z.-D., Hwang, H.-K., Liang, W.-Q. and Tsai, T.-H. (2001). Limit theorems for the number of maxima in random samples from planar regions. Electron. J. Probab. 6 41 pp. (electronic).
  • [3] Barbour, A. D. and Xia, A. (2001). The number of two-dimensional maxima. Adv. in Appl. Probab. 33 727–750.
  • [4] Barbour, A. D. and Xia, A. (2006). Normal approximation for random sums. Adv. in Appl. Probab. 38 693–728.
  • [5] Baryshnikov, Y. (2000). Supporting-points processes and some of their applications. Probab. Theory Related Fields 117 163–182.
  • [6] Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 213–253.
  • [7] Baryshnikov, Y. and Yukich, J. E. (2007). Maximal points and Gaussian fields. Unpublished manuscript. Available at http://www.math.uiuc.edu/~ymb/pub.html.
  • [8] Chen, W.-M., Hwang, H.-K. and Tsai, T.-H. (2003). Efficient maxima-finding algorithms for random planar samples. Discrete Math. Theor. Comput. Sci. 6 107–122 (electronic).
  • [9] Devroye, L. (1993). Records, the maximal layer, and uniform distributions in monotone sets. Comput. Math. Appl. 25 19–31.
  • [10] Ehrgott, M. (2000). Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems 491. Springer, Berlin.
  • [11] Fremlin, D. H. (1997). Skeletons and central sets. Proc. Lond. Math. Soc. (3) 74 701–720.
  • [12] Heveling, M. and Reitzner, M. (2009). Poisson–Voronoi approximation. Ann. Appl. Probab. 19 719–736.
  • [13] Hug, D., Last, G. and Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Math. Z. 246 237–272.
  • [14] Hwang, H.-K. and Tsai, T.-H. (2010). Multivariate records based on dominance. Electron. J. Probab. 15 1863–1892.
  • [15] Jiménez, R. and Yukich, J. E. (2011). Nonparametric estimation of surface integrals. Ann. Statist. 39 232–260.
  • [16] Khmaladze, E. and Toronjadze, N. (2001). On the almost sure coverage property of Voronoi tessellation: The $\mathbb{R}^{1}$ case. Adv. in Appl. Probab. 33 756–764.
  • [17] McGivney, K. and Yukich, J. E. (1999). Asymptotics for Voronoi tessellations on random samples. Stochastic Process. Appl. 83 273–288.
  • [18] Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13 1124–1150.
  • [19] Penrose, M. D. (2007). Gaussian limits for random geometric measures. Electron. J. Probab. 12 989–1035 (electronic).
  • [20] Penrose, M. D. and Yukich, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 1005–1041.
  • [21] Penrose, M. D. and Yukich, J. E. (2003). Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 277–303.
  • [22] Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein’s Method and Applications (A. D. Barbour and L. H. Y. Chen, eds.). Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5 37–58. Singapore Univ. Press, Singapore.
  • [23] Penrose, M. D. and Yukich, J. E. (2013). Limit theory for point processes in manifolds. Ann. Appl. Probab. 23 2161–2211.
  • [24] Pomerol, J.-C. and Barba-Romero, S. (2000). Multicriterion Decision in Management. Kluwer Academic, Boston.
  • [25] Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An Introduction. Springer, New York.
  • [26] Reitzner, M., Spodarev, E. and Zaporozhets, D. (2012). Set reconstruction by Voronoi cells. Adv. in Appl. Probab. 44 938–953.
  • [27] Schulte, M. (2012). A central limit theorem for the Poisson–Voronoi approximation. Adv. in Appl. Math. 49 285–306.
  • [28] Sholomov, L. A. (1983). Survey of estimational results in choice problems. Engineering Cybernetics 21 51–75.
  • [29] Thäle, C. and Yukich, J. (2014). Asymptotic theory for statistics of the Poisson–Voronoi approximation. Preprint.