The Annals of Applied Probability

Spatial Moran models I. Stochastic tunneling in the neutral case

Richard Durrett and Stephen Moseley

Full-text: Open access


We consider a multistage cancer model in which cells are arranged in a $d$-dimensional integer lattice. Starting with all wild-type cells, we prove results about the distribution of the first time when two neutral mutations have accumulated in some cell in dimensions $d\ge2$, extending work done by Komarova [Genetics 166 (2004) 1571–1579] for $d=1$.

Article information

Ann. Appl. Probab., Volume 25, Number 1 (2015), 104-115.

First available in Project Euclid: 16 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 92C50: Medical applications (general)

Biased voter model stochastic tunneling cancer progression


Durrett, Richard; Moseley, Stephen. Spatial Moran models I. Stochastic tunneling in the neutral case. Ann. Appl. Probab. 25 (2015), no. 1, 104--115. doi:10.1214/13-AAP989.

Export citation


  • [1] Bramson, M., Cox, J. T. and Le Gall, J.-F. (2001). Super-Brownian limits of voter model clusters. Ann. Probab. 29 1001–1032.
  • [2] Bramson, M. and Griffeath, D. (1980). On the Williams–Bjerknes tumour growth model. II. Math. Proc. Cambridge Philos. Soc. 88 339–357.
  • [3] Bramson, M. and Griffeath, D. (1981). On the Williams–Bjerknes tumour growth model. I. Ann. Probab. 9 173–185.
  • [4] Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika 60 581–588.
  • [5] Cox, J. T., Durrett, R. and Perkins, E. A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 185–234.
  • [6] Durrett, R., Foo, J. and Leder, K. (2013). Spatial Moran models, II. Tumor growth and progression.
  • [7] Durrett, R. and Schmidt, D. (2008). Waiting for two mutations: With applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180 1501–1509.
  • [8] Durrett, R., Schmidt, D. and Schweinsberg, J. (2009). A waiting time problem arising from the study of multi-stage carcinogenesis. Ann. Appl. Probab. 19 676–718.
  • [9] Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643–663.
  • [10] Iwasa, Y., Michor, F., Komarova, N. L. and Nowak, M. A. (2005). Population genetics of tumor suppressor genes. J. Theoret. Biol. 233 15–23.
  • [11] Iwasa, Y., Michor, F. and Nowak, M. A. (2004). Stochastic tunnels in evolutionary dynamics. Genetics 166 1571–1579.
  • [12] Komarova, N. L. (2006). Spatial stochastic models for cancer initiation and progression. Bull. Math. Biol. 68 1573–1599.
  • [13] Komarova, N. L. (2007). Loss- and gain-of-function mutations in cancer: Mass-action, spatial and hierarchical models. J. Stat. Phys. 128 413–446.
  • [14] Komarova, N. L., Sengupta, A. and Nowak, M. A. (2003). Mutation–selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability. J. Theoret. Biol. 223 433–450.
  • [15] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.
  • [16] Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press, Cambridge, MA.
  • [17] Nowak, M. A., Komarova, N. L., Sengupta, A., Jallepalli, P. V., Shih, I. M., Vogelstein, B. and Lengauer, C. (2002). The role of chromosomal instability in tumor initiation. Proc. Natl. Acad. Sci. 99 16226–16231.
  • [18] Nowak, M. A., Michor, F., Komarova, N. L. and Iwasa, Y. (2004). Evolutionary dynamics of tumor suppressor gene inactivation. Proc. Natl. Acad. Sci. USA 101 10635–10638.
  • [19] Schweinsberg, J. (2008). The waiting time for $m$ mutations. Electron. J. Probab. 13 1442–1478.
  • [20] Williams, T. and Bjerknes, R. (1972). Stochastic model for abnormal clone spread through epithelial basal layer. Nature 235 19–21.