The Annals of Applied Probability

A class of nonergodic interacting particle systems with unique invariant measure

Benedikt Jahnel and Christof Külske

Full-text: Open access

Abstract

We consider a class of discrete $q$-state spin models defined in terms of a translation-invariant quasilocal specification with discrete clock-rotation invariance which have extremal Gibbs measures $\mu'_{\varphi }$ labeled by the uncountably many values of $\varphi $ in the one-dimensional sphere (introduced by van Enter, Opoku, Külske [J. Phys. A 44 (2011) 475002, 11]). In the present paper we construct an associated Markov jump process with quasilocal rates whose semigroup $(S_{t})_{t\geq0}$ acts by a continuous rotation $S_{t}(\mu'_{\varphi })=\mu'_{\varphi +t}$.

As a consequence our construction provides examples of interacting particle systems with unique translation-invariant invariant measure, which is not long-time limit of all starting measures, answering an old question (compare Liggett [Interacting Particle Systems (1985) Springer], question four, Chapter one). The construction of this particle system is inspired by recent conjectures of Maes and Shlosman about the intermediate temperature regime of the nearest-neighbor clock model. We define our generator of the interacting particle system as a (noncommuting) sum of the rotation part and a Glauber part.

Technically the paper rests on the control of the spread of weak nonlocalities and relative entropy-methods, both in equilibrium and dynamically, based on Dobrushin-uniqueness bounds for conditional measures.

Article information

Source
Ann. Appl. Probab., Volume 24, Number 6 (2014), 2595-2643.

Dates
First available in Project Euclid: 26 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1409058041

Digital Object Identifier
doi:10.1214/13-AAP987

Mathematical Reviews number (MathSciNet)
MR3262512

Zentralblatt MATH identifier
1304.82014

Subjects
Primary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82C22: Interacting particle systems [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Interacting particle systems nonequilibrium nonergodicity discretization Gibbs measures $XY$-model clock model

Citation

Jahnel, Benedikt; Külske, Christof. A class of nonergodic interacting particle systems with unique invariant measure. Ann. Appl. Probab. 24 (2014), no. 6, 2595--2643. doi:10.1214/13-AAP987. https://projecteuclid.org/euclid.aoap/1409058041


Export citation

References

  • [1] Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. and Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 137–185.
  • [2] Brito, A. F., Redinz, J. A. and Plascak, J. A. (2010). Two-dimensional $XY$ and clock models studied via the dynamics generated by rough surfaces. Phys. Rev. E (3) 81 031130.
  • [3] Chassaing, P. and Mairesse, J. (2011). A non-ergodic probabilistic cellular automaton with a unique invariant measure. Stochastic Process. Appl. 121 2474–2487.
  • [4] Collet, F. and Dai Pra, P. (2012). The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 17 no. 26, 40.
  • [5] Fernández, R. (2006). Gibbsianness and non-Gibbsianness in lattice random fields. In Mathematical Statistical Physics 731–799. Elsevier, Amsterdam.
  • [6] Fröhlich, J. and Pfister, C.-E. (1983). Spin waves, vortices, and the structure of equilibrium states in the classical $XY$ model. Comm. Math. Phys. 89 303–327.
  • [7] Fröhlich, J., Simon, B. and Spencer, T. (1976). Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50 79–95.
  • [8] Fröhlich, J. and Spencer, T. (1981). The Kosterlitz–Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81 527–602.
  • [9] Fröhlich, J. and Spencer, T. (1982). Massless phases and symmetry restoration in Abelian gauge theories and spin systems. Comm. Math. Phys. 83 411–454.
  • [10] Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions, 2nd ed. de Gruyter, Berlin.
  • [11] Giacomin, G., Pakdaman, K., Pellegrin, X. and Poquet, C. (2012). Transitions in active rotator systems: Invariant hyperbolic manifold approach. SIAM J. Math. Anal. 44 4165–4194.
  • [12] Häggström, O. and Külske, C. (2004). Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov Process. Related Fields 10 477–506.
  • [13] Holley, R. (1971). Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys. 23 87–99.
  • [14] Jahnel, B. and Külske, C. (2014). Synchronization for discrete mean-field rotators. Electron. J. Probab. 19 14.
  • [15] Külske, C., Le Ny, A. and Redig, F. (2004). Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32 1691–1726.
  • [16] Külske, C. and Opoku, A. A. (2008). The posterior metric and the goodness of Gibbsianness for transforms of Gibbs measures. Electron. J. Probab. 13 1307–1344.
  • [17] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • [18] Maes, C. and Shlosman, S. (2011). Rotating states in driven clock- and $XY$-models. J. Stat. Phys. 144 1238–1246.
  • [19] Newman, C. M. and Schulman, L. S. (1982). Asymptotic symmetry: Enhancement and stability. Phys. Rev. B (3) 26 3910–3914.
  • [20] Pfister, C. E. (1982). Translation invariant equilibrium states of ferromagnetic Abelian lattice systems. Comm. Math. Phys. 86 375–390.
  • [21] van Enter, A. C. D., Fernández, R. and Sokal, A. D. (1993). Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72 879–1167.
  • [22] van Enter, A. C. D., Külske, C. and Opoku, A. A. (2011). Discrete approximations to vector spin models. J. Phys. A 44 475002, 11.
  • [23] van Enter, A. C. D. and Shlosman, S. B. (2005). Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries. Comm. Math. Phys. 255 21–32.