The Annals of Applied Probability

A small-time coupling between $\Lambda$-coalescents and branching processes

Julien Berestycki, Nathanaël Berestycki, and Vlada Limic

Full-text: Open access

Abstract

We describe a new general connection between $\Lambda$-coalescents and genealogies of continuous-state branching processes. This connection is based on the construction of an explicit coupling using a particle representation inspired by the lookdown process of Donnelly and Kurtz. This coupling has the property that the coalescent comes down from infinity if and only if the branching process becomes extinct, thereby answering a question of Bertoin and Le Gall. The coupling also offers new perspective on the speed of coming down from infinity and allows us to relate power-law behavior for $N^{\Lambda}(t)$ to the classical upper and lower indices arising in the study of pathwise properties of Lévy processes.

Article information

Source
Ann. Appl. Probab., Volume 24, Number 2 (2014), 449-475.

Dates
First available in Project Euclid: 10 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1394465362

Digital Object Identifier
doi:10.1214/12-AAP911

Mathematical Reviews number (MathSciNet)
MR3178488

Zentralblatt MATH identifier
1303.60066

Subjects
Primary: 60J25: Continuous-time Markov processes on general state spaces 60F99: None of the above, but in this section 92D25: Population dynamics (general)

Keywords
$\Lambda$-coalescents continuous-state branching processes particle system representation Lévy processes lookdown construction Fleming–Viot processes

Citation

Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada. A small-time coupling between $\Lambda$-coalescents and branching processes. Ann. Appl. Probab. 24 (2014), no. 2, 449--475. doi:10.1214/12-AAP911. https://projecteuclid.org/euclid.aoap/1394465362


Export citation

References

  • [1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
  • [2] Berestycki, J., Berestycki, N. and Limic, V. (2010). The $\Lambda$-coalescent speed of coming down from infinity. Ann. Probab. 38 207–233.
  • [3] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2007). Beta-coalescents and continuous stable random trees. Ann. Probab. 35 1835–1887.
  • [4] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 44 214–238.
  • [5] Berestycki, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos [Mathematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro.
  • [6] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge.
  • [7] Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 249–266.
  • [8] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 261–288.
  • [9] Bertoin, J. and Le Gall, J.-F. (2005). Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 41 307–333.
  • [10] Bertoin, J. and Le Gall, J.-F. (2006). Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 147–181 (electronic).
  • [11] Birkner, M., Blath, J., Capaldo, M., Etheridge, A., Möhle, M., Schweinsberg, J. and Wakolbinger, A. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 303–325 (electronic).
  • [12] Blumenthal, R. M. and Getoor, R. K. (1961). Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 493–516.
  • [13] Donnelly, P. and Kurtz, T. G. (1996). A countable representation of the Fleming–Viot measure-valued diffusion. Ann. Probab. 24 698–742.
  • [14] Donnelly, P. and Kurtz, T. G. (1999). Particle representations for measure-valued population models. Ann. Probab. 27 166–205.
  • [15] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 vi+147.
  • [16] Durrett, R. (2004). Probability: Theory and Examples, 3rd ed. Duxbury Press, Belmont, CA.
  • [17] Etheridge, A. M. (2000). An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI.
  • [18] Foucart, C. (2012). Generalized Fleming–Viot processes with immigration via stochastic flows of partitions. ALEA Lat. Am. J. Probab. Math. Stat. 9 451–472.
  • [19] Grey, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11 669–677.
  • [20] Labbé, C. (2011). From flows of Lambda Fleming–Viot processes to lookdown processes via flows of partitions. Preprint. Available at arXiv:1107.3419v1.
  • [21] Lamperti, J. (1967). The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7 271–288.
  • [22] Lamperti, J. (1967). Continuous state branching processes. Bull. Amer. Math. Soc. (N.S.) 73 382–386.
  • [23] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York.
  • [24] Perkins, E. A. (1992). Conditional Dawson–Watanabe processes and Fleming–Viot processes. In Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991). Progress in Probability 29 143–156. Birkhäuser, Boston, MA.
  • [25] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902.
  • [26] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin.
  • [27] Pruitt, W. E. (1981). The growth of random walks and Lévy processes. Ann. Probab. 9 948–956.
  • [28] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116–1125.
  • [29] Schweinsberg, J. (2000). A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Commun. Probab. 5 1–11 (electronic).