The Annals of Applied Probability

Robust filtering: Correlated noise and multidimensional observation

D. Crisan, J. Diehl, P. K. Friz, and H. Oberhauser

Full-text: Open access

Abstract

In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721–734, Sijthoff & Noordhoff] pointed out that it would be natural for $\pi_{t}$, the solution of the stochastic filtering problem, to depend continuously on the observed data $Y=\{Y_{s},s\in[0,t]\}$. Indeed, if the signal and the observation noise are independent one can show that, for any suitably chosen test function $f$, there exists a continuous map $\theta^{f}_{t}$, defined on the space of continuous paths $C([0,t],\mathbb{R} ^{d})$ endowed with the uniform convergence topology such that $\pi_{t}(f)=\theta^{f}_{t}(Y)$, almost surely; see, for example, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721–734, Sijthoff & Noordhoff], Clark and Crisan [Probab. Theory Related Fields 133 (2005) 43–56], Davis [Z. Wahrsch. Verw. Gebiete 54 (1980) 125–139], Davis [Teor. Veroyatn. Primen. 27 (1982) 160–167], Kushner [Stochastics 3 (1979) 75–83]. As shown by Davis and Spathopoulos [SIAM J. Control Optim. 25 (1987) 260–278], Davis [In Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie, France 1980 505–528], [In The Oxford Handbook of Nonlinear Filtering (2011) 403–424 Oxford Univ. Press], this type of robust representation is also possible when the signal and the observation noise are correlated, provided the observation process is scalar. For a general correlated noise and multidimensional observations such a representation does not exist. By using the theory of rough paths we provide a solution to this deficiency: the observation process $Y$ is “lifted” to the process $\mathbf{Y}$ that consists of $Y$ and its corresponding Lévy area process, and we show that there exists a continuous map $\theta_{t}^{f}$, defined on a suitably chosen space of Hölder continuous paths such that $\pi_{t}(f)=\theta_{t}^{f}(\mathbf{Y})$, almost surely.

Article information

Source
Ann. Appl. Probab., Volume 23, Number 5 (2013), 2139-2160.

Dates
First available in Project Euclid: 28 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1377696308

Digital Object Identifier
doi:10.1214/12-AAP896

Mathematical Reviews number (MathSciNet)
MR3134732

Zentralblatt MATH identifier
1296.60097

Subjects
Primary: 60G35: Signal detection and filtering [See also 62M20, 93E10, 93E11, 94Axx] 93E11: Filtering [See also 60G35]

Keywords
Filtering robustness rough path theory

Citation

Crisan, D.; Diehl, J.; Friz, P. K.; Oberhauser, H. Robust filtering: Correlated noise and multidimensional observation. Ann. Appl. Probab. 23 (2013), no. 5, 2139--2160. doi:10.1214/12-AAP896. https://projecteuclid.org/euclid.aoap/1377696308


Export citation

References

  • [1] Bagchi, A. and Karandikar, R. (1994). White noise theory of robust nonlinear filtering with correlated state and observation noises. Systems Control Lett. 23 137–148.
  • [2] Bain, A. and Crisan, D. (2009). Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability 60. Springer, New York.
  • [3] Ben Arous, G. and Castell, F. (1996). Flow decomposition and large deviations. J. Funct. Anal. 140 23–67.
  • [4] Bogachev, V. I. (2007). Measure Theory. Vol. I, II. Springer, Berlin.
  • [5] Breiman, L. (1992). Probability. Classics in Applied Mathematics 7. SIAM, Philadelphia, PA.
  • [6] Buckdahn, R. and Ma, J. (2007). Pathwise stochastic control problems and stochastic HJB equations. SIAM J. Control Optim. 45 2224–2256 (electronic).
  • [7] Clark, J. M. C. (1978). The design of robust approximations to the stochastic differential equations of nonlinear filtering. In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977). NATO Advanced Study Inst. Ser., Ser. E: Appl. Sci. 25 721–734. Sijthoff & Noordhoff, Alphen aan den Rijn.
  • [8] Clark, J. M. C. and Crisan, D. (2005). On a robust version of the integral representation formula of nonlinear filtering. Probab. Theory Related Fields 133 43–56.
  • [9] Crisan, D. and Rozovskiĭ, B., eds. (2011). The Oxford Handbook of Nonlinear Filtering. Oxford Univ. Press, Oxford.
  • [10] Davis, M. H. A. (1980). On a multiplicative functional transformation arising in nonlinear filtering theory. Z. Wahrsch. Verw. Gebiete 54 125–139.
  • [11] Davis, M. H. A. (1981). Pathwise nonlinear filtering. In Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie, France 1980 505–528. NATO Advanced Study Institute Series.
  • [12] Davis, M. H. A. (1982). A pathwise solution of the equations of nonlinear filtering. Teor. Veroyatn. Primen. 27 160–167.
  • [13] Davis, M. H. A. (2011). Pathwise nonlinear filtering with correlated noise. In The Oxford Handbook of Nonlinear Filtering 403–424. Oxford Univ. Press, Oxford.
  • [14] Davis, M. H. A. and Spathopoulos, M. P. (1987). Pathwise nonlinear filtering for nondegenerate diffusions with noise correlation. SIAM J. Control Optim. 25 260–278.
  • [15] Del Moral, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York.
  • [16] Del Moral, P., Hu, P. and Wu, L. (2010). On the concentration properties of interacting particle processes. Machine Learning 3 225–389.
  • [17] Del Moral, P., Jacod, J. and Protter, P. (2001). The Monte-Carlo method for filtering with discrete-time observations. Probab. Theory Related Fields 120 346–368.
  • [18] Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in Math. 1729 1–145. Springer, Berlin.
  • [19] Diehl, J. and Oberhauser, H. (2013). A Levy-area between Brownian motion and rough paths with applications to robust non-linear filtering and RPDEs. Preprint available at http://arxiv.org/abs/1301.3799.
  • [20] Doss, H. (1977). Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.) 13 99–125.
  • [21] Elliott, R. J. and Kohlmann, M. (1981). Robust filtering for correlated multidimensional observations. Math. Z. 178 559–578.
  • [22] Florchinger, P. (1993). Zakai equation of nonlinear filtering with unbounded coefficients. The case of dependent noises. Systems Control Lett. 21 413–422.
  • [23] Florchinger, P. and Nappo, G. (2011). Continuity of the filter with unbounded observation coefficients. Stoch. Anal. Appl. 29 612–630.
  • [24] Friz, P. K. (2005). Continuity of the Itô-map for Hölder rough paths with applications to the support theorem in Hölder norm. In Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and Its Applications 140 117–135. Springer, New York.
  • [25] Friz, P. K. and Victoir, N. B. (2010). Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge.
  • [26] Kushner, H. J. (1979). A robust discrete state approximation to the optimal nonlinear filter for a diffusion. Stochastics 3 75–83.
  • [27] Kushner, H. J. (1979). A robust discrete state approximation to the optimal nonlinear filter for a diffusion. Stochastics 3 75–83.
  • [28] Lyons, T. (1994). Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1 451–464.
  • [29] Lyons, T. and Qian, Z. (2002). System Control and Rough Paths. Oxford Univ. Press, Oxford.
  • [30] Lyons, T. J., Caruana, M. and Lévy, T. (2007). Differential Equations Driven by Rough Paths. Lecture Notes in Math. 1908. Springer, Berlin.
  • [31] Protter, P. E. (2004). Stochastic Integration and Differential Equations: Stochastic Modelling and Applied Probability, 2nd ed. Applications of Mathematics (New York) 21. Springer, Berlin.
  • [32] Sussmann, H. J. (1978). On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6 19–41.