The Annals of Applied Probability

Three-dimensional Brownian motion and the golden ratio rule

Abstract

Let $X=(X_{t})_{t\ge0}$ be a transient diffusion process in $(0,\infty)$ with the diffusion coefficient $\sigma>0$ and the scale function $L$ such that $X_{t}\rightarrow\infty$ as $t\rightarrow\infty$, let $I_{t}$ denote its running minimum for $t\ge0$, and let $\theta$ denote the time of its ultimate minimum $I_{\infty}$. Setting $c(i,x)=1-2L(x)/L(i)$ we show that the stopping time

$\tau_{*}=\inf\{t\ge0\vert X_{t}\ge f_{*}(I_{t})\}$

minimizes $\mathsf{E}(\vert\theta-\tau\vert-\theta)$ over all stopping times $\tau$ of $X$ (with finite mean) where the optimal boundary $f_{*}$ can be characterized as the minimal solution to

$f'(i)=-\frac{\sigma^{2}(f(i))L'(f(i))}{c(i,f(i))[L(f(i))-L(i)]}\int_{i}^{f(i)}\frac{c_{i}'(i,y)[L(y)-L(i)]}{\sigma^{2}(y)L'(y)}\,dy$

staying strictly above the curve $h(i)=L^{-1}(L(i)/2)$ for $i>0$. In particular, when $X$ is the radial part of three-dimensional Brownian motion, we find that

$\tau_{*}=\inf\biggl\{t\ge0\Big\vert\frac{X_{t}-I_{t}}{I_{t}}\ge\varphi\biggr\},$

where $\varphi=(1+\sqrt{5})/2=1.61\ldots$ is the golden ratio. The derived results are applied to problems of optimal trading in the presence of bubbles where we show that the golden ratio rule offers a rigorous optimality argument for the choice of the well-known golden retracement in technical analysis of asset prices.

Article information

Source
Ann. Appl. Probab., Volume 23, Number 3 (2013), 895-922.

Dates
First available in Project Euclid: 7 March 2013

https://projecteuclid.org/euclid.aoap/1362684849

Digital Object Identifier
doi:10.1214/12-AAP859

Mathematical Reviews number (MathSciNet)
MR3076673

Zentralblatt MATH identifier
06162080

Citation

Glover, Kristoffer; Hulley, Hardy; Peskir, Goran. Three-dimensional Brownian motion and the golden ratio rule. Ann. Appl. Probab. 23 (2013), no. 3, 895--922. doi:10.1214/12-AAP859. https://projecteuclid.org/euclid.aoap/1362684849

References

• [1] Bernyk, V., Dalang, R. C. and Peskir, G. (2011). Predicting the ultimate supremum of a stable Lévy process with no negative jumps. Ann. Probab. 39 2385–2423.
• [2] Cohen, A. (2010). Examples of optimal prediction in the infinite horizon case. Statist. Probab. Lett. 80 950–957.
• [3] Cox, A. M. G., Hobson, D. and Obłój, J. (2008). Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping. Ann. Appl. Probab. 18 1870–1896.
• [4] Cox, J. (1975). Notes on option pricing I: Constant elasticity of diffusions. Working paper, Stanford Univ.
• [5] Csáki, E., Földes, A. and Salminen, P. (1987). On the joint distribution of the maximum and its location for a linear diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 23 179–194.
• [6] Du Toit, J. and Peskir, G. (2007). The trap of complacency in predicting the maximum. Ann. Probab. 35 340–365.
• [7] Du Toit, J. and Peskir, G. (2008). Predicting the time of the ultimate maximum for Brownian motion with drift. In Mathematical Control Theory and Finance 95–112. Springer, Berlin.
• [8] Du Toit, J. and Peskir, G. (2009). Selling a stock at the ultimate maximum. Ann. Appl. Probab. 19 983–1014.
• [9] Du Toit, J., Peskir, G. and Shiryaev, A. N. (2008). Predicting the last zero of Brownian motion with drift. Stochastics 80 229–245.
• [10] Dubins, L. E., Gilat, D. and Meilijson, I. (2009). On the expected diameter of an $L_{2}$-bounded martingale. Ann. Probab. 37 393–402.
• [11] Dubins, L. E. and Schwarz, G. (1988). A sharp inequality for sub-martingales and stopping times. Astérisque 157-158 129–145.
• [12] Dubins, L. E., Shepp, L. A. and Shiryaev, A. N. (1993). Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl. 38 226–261.
• [13] Emanuel, D. C. and MacBeth, J. D. (1982). Further results on the constant elasticity of variance call option pricing model. J. Financial Quant. Anal. 17 533–554.
• [14] Espinosa, G. E. and Touzi, N. (2010). Detecting the maximum of a mean-reverting scalar diffusion. Working paper, Univ. Paris-Dauphine.
• [15] Gapeev, P. V. (2006). Discounted optimal stopping for maxima in diffusion models with finite horizon. Electron. J. Probab. 11 1031–1048 (electronic).
• [16] Gapeev, P. V. (2007). Discounted optimal stopping for maxima of some jump-diffusion processes. J. Appl. Probab. 44 713–731.
• [17] Geman, H. and Shih, Y. F. (2009). Modelling commodity prices under the CEV model. J. Alternative Investments 11 65–84.
• [18] Goldman, M. B., Sosin, H. B. and Gatto, M. A. (1979). Path dependent options: “Buy at the low, sell at the high.” J. Finance 34 1111–1127.
• [19] Graversen, S. E., Peskir, G. and Shiryaev, A. N. (2001). Stopping Brownian motion without anticipation as close as possible to its ulimate maximum. Theory Probab. Appl. 45 41–50.
• [20] Guo, X. and Zervos, M. (2010). $\pi$ options. Stochastic Process. Appl. 120 1033–1059.
• [21] Heston, S. L., Loewenstein, M. and Willard, G. A. (2007). Options and bubbles. Rev. Financial Studies 20 359–390.
• [22] Hobson, D. (2007). Optimal stopping of the maximum process: A converse to the results of Peskir. Stochastics 79 85–102.
• [23] Jacka, S. D. (1991). Optimal stopping and best constants for Doob-like inequalities. I. The case $p=1$. Ann. Probab. 19 1798–1821.
• [24] Livio, M. (2002). The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number. Broadway Books, New York.
• [25] Novikov, A. A. and Shiryaev, A. N. (2008). On a stochastic version of the trading rule “buy and hold.” Statist. Decisions 26 289–302.
• [26] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321–390.
• [27] Obłój, J. (2007). The maximality principle revisited: On certain optimal stopping problems. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 309–328. Springer, Berlin.
• [28] Osborne, M. F. M. (1959). Brownian motion in the stock market. Oper. Res. 7 145–173.
• [29] Pedersen, J. L. (2000). Discounted optimal stopping problems for the maximum process. J. Appl. Probab. 37 972–983.
• [30] Pedersen, J. L. (2003). Optimal prediction of the ultimate maximum of Brownian motion. Stoch. Stoch. Rep. 75 205–219.
• [31] Peskir, G. (1998). Optimal stopping of the maximum process: The maximality principle. Ann. Probab. 26 1614–1640.
• [32] Peskir, G. (2007). A change-of-variable formula with local time on surfaces. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 69–96. Springer, Berlin.
• [33] Peskir, G. (2012). A duality principle for the Legendre transform. J. Convex Anal. 19 609–630.
• [34] Peskir, G. (2010). Quickest detection of a hidden target and extremal surfaces. Research Report No. 23, Probab. Statist. Group Manchester (25 pp.).
• [35] Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-boundary Problems. Birkhäuser, Basel.
• [36] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. Springer, Berlin.
• [37] Samuelson, P. (1965). Rational theory of warrant pricing. Industrial Management Review 6 13–32.
• [38] Shi, Z. (1996). How long does it take a transient Bessel process to reach its future infimum? In Séminaire de Probabilités, XXX. Lecture Notes in Math. 1626 207–217. Springer, Berlin.
• [39] Shiryaev, A. N. (2002). Quickest detection problems in the technical analysis of the financial data. In Mathematical Finance—Bachelier Congress, 2000 (Paris). Springer Finance 487–521. Springer, Berlin.
• [40] Shiryaev, A. N. (2009). On conditional-extremal problems of the quickest detection of nonpredictable times of the observable Brownian motion. Theory Probab. Appl. 53 663–678.
• [41] Urusov, M. A. (2005). On a property of the time of attaining the maximum by Brownian motion and some optimal stopping problems. Theory Probab. Appl. 49 169–176.
• [42] Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. (3) 28 738–768.
• [43] Zhitlukhin, M. (2009). A maximal inequality for skew Brownian motion. Statist. Decisions 27 261–280.