The Annals of Applied Probability

Cone-constrained continuous-time Markowitz problems

Christoph Czichowsky and Martin Schweizer

Full-text: Open access

Abstract

The Markowitz problem consists of finding, in a financial market, a self-financing trading strategy whose final wealth has maximal mean and minimal variance. We study this in continuous time in a general semimartingale model and under cone constraints: trading strategies must take values in a (possibly random and time-dependent) closed cone. We first prove existence of a solution for convex constraints by showing that the space of constrained terminal gains, which is a space of stochastic integrals, is closed in $L^{2}$. Then we use stochastic control methods to describe the local structure of the optimal strategy, as follows. The value process of a naturally associated constrained linear-quadratic optimal control problem is decomposed into a sum with two opportunity processes $L^{\pm}$ appearing as coefficients. The martingale optimality principle translates into a drift condition for the semimartingale characteristics of $L^{\pm}$ or equivalently into a coupled system of backward stochastic differential equations for $L^{\pm}$. We show how this can be used to both characterize and construct optimal strategies. Our results explain and generalize all the results available in the literature so far. Moreover, we even obtain new sharp results in the unconstrained case.

Article information

Source
Ann. Appl. Probab., Volume 23, Number 2 (2013), 764-810.

Dates
First available in Project Euclid: 12 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1360682029

Digital Object Identifier
doi:10.1214/12-AAP855

Mathematical Reviews number (MathSciNet)
MR3059275

Zentralblatt MATH identifier
1268.91162

Subjects
Primary: 91G10: Portfolio theory 91G80: Financial applications of other theories (stochastic control, calculus of variations, PDE, SPDE, dynamical systems) 93E20: Optimal stochastic control 60G48: Generalizations of martingales 49N10: Linear-quadratic problems

Keywords
Markowitz problem cone constraints portfolio selection mean-variance hedging stochastic control semimartingales BSDEs martingale optimality principle opportunity process $\mathcal{E}$-martingales linear-quadratic control

Citation

Czichowsky, Christoph; Schweizer, Martin. Cone-constrained continuous-time Markowitz problems. Ann. Appl. Probab. 23 (2013), no. 2, 764--810. doi:10.1214/12-AAP855. https://projecteuclid.org/euclid.aoap/1360682029


Export citation

References

  • [1] Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed. Springer, Berlin.
  • [2] Bielecki, T. R., Jin, H., Pliska, S. R. and Zhou, X. Y. (2005). Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Finance 15 213–244.
  • [3] Bobrovnytska, O. and Schweizer, M. (2004). Mean-variance hedging and stochastic control: Beyond the Brownian setting. IEEE Trans. Automat. Control 49 396–408.
  • [4] Černý, A. and Kallsen, J. (2007). On the structure of general mean-variance hedging strategies. Ann. Probab. 35 1479–1531.
  • [5] Černý, A. and Kallsen, J. (2008). A counterexample concerning the variance-optimal martingale measure. Math. Finance 18 305–316.
  • [6] Choulli, T., Krawczyk, L. and Stricker, C. (1998). ${\mathcal{E}}$-martingales and their applications in mathematical finance. Ann. Probab. 26 853–876.
  • [7] Czichowsky, C. and Schweizer, M. (2010). Convex duality in mean-variance hedging under convex trading constraints. NCCR FINRISK Working Paper 667, ETH Zurich. Available at http://www.nccr-finrisk.uzh.ch/wps.php?action=query&id=667. Adv. in Appl. Probab. To appear.
  • [8] Czichowsky, C. and Schweizer, M. (2011). Closedness in the semimartingale topology for spaces of stochastic integrals with constrained integrands. In Séminaire de Probabilités XLIII (C. Donati-Martin et al., eds.). Lecture Notes in Math. 2006 413–436. Springer, Berlin.
  • [9] Delbaen, F. and Schachermayer, W. (1996). The variance-optimal martingale measure for continuous processes. Bernoulli 2 81–105 [Corrections. Bernoulli 2 (1996) 379–380. MR1440275].
  • [10] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential B. Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam.
  • [11] Donnelly, C. (2008). Convex duality in constrained mean-variance portfolio optimization under a regime-switching model. Ph.D. thesis, Univ. Waterloo.
  • [12] El Karoui, N. (1981). Les aspects probabilistes du contrôle stochastique. In Ninth Saint Flour Probability Summer School—1979 (Saint Flour, 1979) (P. L. Hennequin, ed.). Lecture Notes in Math. 876 73–238. Springer, Berlin.
  • [13] Hu, Y. and Zhou, X. Y. (2005). Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim. 44 444–466 (electronic).
  • [14] Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Math. 714. Springer, Berlin.
  • [15] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin.
  • [16] Jin, H. and Zhou, X. Y. (2007). Continuous-time Markowitz’s problems in an incomplete market, with no-shorting portfolios. In Stochastic Analysis and Applications (F. E. Benth et al., eds.). Abel Symp. 2 435–459. Springer, Berlin.
  • [17] Kobylanski, M. (2000). Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 558–602.
  • [18] Kohlmann, M. and Tang, S. (2002). Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging. Stochastic Process. Appl. 97 255–288.
  • [19] Korn, R. and Trautmann, S. (1995). Continuous-time portfolio optimization under terminal wealth constraints. ZOR—Math. Methods Oper. Res. 42 69–92.
  • [20] Labbé, C. and Heunis, A. J. (2007). Convex duality in constrained mean-variance portfolio optimization. Adv. in Appl. Probab. 39 77–104.
  • [21] Laurent, J. P. and Pham, H. (1999). Dynamic programming and mean-variance hedging. Finance Stoch. 3 83–110.
  • [22] Li, X., Zhou, X. Y. and Lim, A. E. B. (2002). Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 40 1540–1555 (electronic).
  • [23] Mania, M. and Tevzadze, R. (2003). Backward stochastic PDE and imperfect hedging. Int. J. Theor. Appl. Finance 6 663–692.
  • [24] Markowitz, H. (1952). Portfolio selection. J. Finance 7 77–91.
  • [25] Markowitz, H. M. (2002). Portfolio Selection: Efficient Diversification of Investments, 2nd ed. Blackwell, Oxford.
  • [26] Mémin, J. (1980). Espaces de semi martingales et changement de probabilité. Z. Wahrsch. Verw. Gebiete 52 9–39.
  • [27] Nutz, M. (2012). The Bellman equation for power utility maximization with semimartingales. Ann. Appl. Probab. 22 363–406. Available at http://arxiv.org/abs/0912.1883v2.
  • [28] Protter, P. E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin.
  • [29] Rockafellar, R. T. (1976). Integral functionals, normal integrands and measurable selections. In Nonlinear Operators and the Calculus of Variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975) (J. P. Gossez et al., eds.). Lecture Notes in Math. 543. 157–207. Springer, Berlin.
  • [30] Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In Option Pricing, Interest Rates and Risk Management (E. Jouini et al., eds.) 538–574. Cambridge Univ. Press, Cambridge.
  • [31] Sun, W. G. and Wang, C. F. (2006). The mean-variance investment problem in a constrained financial market. J. Math. Econom. 42 885–895.
  • [32] Xia, J. (2005). Mean-variance portfolio choice: Quadratic partial hedging. Math. Finance 15 533–538.