The Annals of Applied Probability

Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs

Yu-Ting Chen

Full-text: Open access

Abstract

We study two of the simple rules on finite graphs under the death–birth updating and the imitation updating discovered by Ohtsuki, Hauert, Lieberman and Nowak [Nature 441 (2006) 502–505]. Each rule specifies a payoff-ratio cutoff point for the magnitude of fixation probabilities of the underlying evolutionary game between cooperators and defectors. We view the Markov chains associated with the two updating mechanisms as voter model perturbations. Then we present a first-order approximation for fixation probabilities of general voter model perturbations on finite graphs subject to small perturbation in terms of the voter model fixation probabilities. In the context of regular graphs, we obtain algebraically explicit first-order approximations for the fixation probabilities of cooperators distributed as certain uniform distributions. These approximations lead to a rigorous proof that both of the rules of Ohtsuki et al. are valid and are sharp.

Article information

Source
Ann. Appl. Probab., Volume 23, Number 2 (2013), 637-664.

Dates
First available in Project Euclid: 12 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1360682025

Digital Object Identifier
doi:10.1214/12-AAP849

Mathematical Reviews number (MathSciNet)
MR3059271

Zentralblatt MATH identifier
1267.91019

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 91A22: Evolutionary games
Secondary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces) 60J28: Applications of continuous-time Markov processes on discrete state spaces

Keywords
Evolutionary game theory evolution of cooperation interacting particle systems voter model perturbations voter model coalescing random walks perturbations of Markov chains

Citation

Chen, Yu-Ting. Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 23 (2013), no. 2, 637--664. doi:10.1214/12-AAP849. https://projecteuclid.org/euclid.aoap/1360682025


Export citation

References

  • [1] Aldous, D. and Fill, J. A. (1994). Reversible Markov chains and random walks on graphs. Unpublished manuscript. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.
  • [2] Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. Applications of Mathematics (New York) 51. Springer, New York.
  • [3] Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooperation. Science 211 1390–1396.
  • [4] Bollobás, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics 184. Springer, New York.
  • [5] Chen, Y. T. (2010). The $b/c$ rule under the imitation updating on $\mathbb{Z}^{d}$ for $d\geq3$. Unpublished manuscript.
  • [6] Cox, J. T., Durrett, R. and Perkins, E. A. (2011). Voter model perturbations and reaction diffusion equations. Available at http://arxiv.org/abs/1103.1676.
  • [7] Cox, J. T. and Perkins, E. A. (2005). Rescaled Lotka–Volterra models converge to super-Brownian motion. Ann. Probab. 33 904–947.
  • [8] Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. J. Theoret. Biol. 7 1–16.
  • [9] Hauert, C. (2008). Evolutionary dynamics. In Evolution from Cellular to Social Scales, NATO Science for Peace and Security Series 11–44. Springer, Dordrecht.
  • [10] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge.
  • [11] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.
  • [12] Lovász, L. (1996). Random walks on graphs: A survey. In Combinatorics, Paul Erdős Is Eighty, Vol. 2 (Keszthely, 1993). Bolyai Society Mathematical Studies 2 353–397. János Bolyai Math. Soc., Budapest.
  • [13] Mayer, J. E. and Montroll, E. (1941). Molecular distribution. J. Chem. Phys. 9 2–16.
  • [14] Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge Univ. Press, Cambridge.
  • [15] Nowak, M. and Sigmund, K. (1990). The evolution of stochastic strategies in the prisoner’s dilemma. Acta Appl. Math. 20 247–265.
  • [16] Nowak, M. A. (2006). Five rules for the evolution of cooperation. Nature 314 1560–1563.
  • [17] Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life. The Belknap Press of Harvard Univ. Press, Cambridge, MA.
  • [18] Ohtsuki, H., Hauert, C., Lieberman, E. and Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature 441 502–505.
  • [19] Ohtsuki, H. and Nowak, M. A. (2006). Evolutionary games on cycles. Proc. Biol. Sci. 273 2249–2256.
  • [20] Sigmund, K. (2010). The Calculus of Selfishness. Princeton Univ. Press, Princeton, NJ.
  • [21] Taylor, P. D., Day, T. and Wild, G. (2007). Evolution of cooperation in a finite homogeneous graph. Nature 447 469–472.