The Annals of Applied Probability
- Ann. Appl. Probab.
- Volume 22, Number 5 (2012), 1962-1988.
Fast approach to the Tracy–Widom law at the edge of GOE and GUE
Iain M. Johnstone and Zongming Ma
Full-text: Open access
Abstract
We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and orthogonal ensembles to their Tracy–Widom limits.
We show that one can achieve an $O(N^{-2/3})$ rate with particular choices of the centering and scaling constants. The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both unitary and orthogonal versions.
Numerical work shows that the suggested constants yield reasonable approximations, even for surprisingly small values of $N$.
Article information
Source
Ann. Appl. Probab., Volume 22, Number 5 (2012), 1962-1988.
Dates
First available in Project Euclid: 12 October 2012
Permanent link to this document
https://projecteuclid.org/euclid.aoap/1350067991
Digital Object Identifier
doi:10.1214/11-AAP819
Mathematical Reviews number (MathSciNet)
MR3025686
Zentralblatt MATH identifier
1253.60029
Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 15B52: Random matrices
Keywords
Rate of convergence random matrix largest eigenvalue
Citation
Johnstone, Iain M.; Ma, Zongming. Fast approach to the Tracy–Widom law at the edge of GOE and GUE. Ann. Appl. Probab. 22 (2012), no. 5, 1962--1988. doi:10.1214/11-AAP819. https://projecteuclid.org/euclid.aoap/1350067991
References
- Adler, M., Forrester, P. J., Nagao, T. and van Moerbeke, P. (2000). Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99 141–170.Mathematical Reviews (MathSciNet): MR1762659
Zentralblatt MATH: 0989.82020
Digital Object Identifier: doi:10.1023/A:1018644606835 - Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge.Mathematical Reviews (MathSciNet): MR2760897
- Bornemann, F. (2010). On the numerical evaluation of distributions in random matrix theory: A review. Markov Process. Related Field 16 803–866.
- Choup, L. N. (2006). Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. Int. Math. Res. Not. Art. ID 61049, 32.
- Choup, L. N. (2008). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited. J. Math. Phys. 49 033508, 16.Mathematical Reviews (MathSciNet): MR2406805
Zentralblatt MATH: 1153.81343
Digital Object Identifier: doi:10.1063/1.2873345 - Choup, L. N. (2009). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble. J. Math. Phys. 50 013512, 22.Mathematical Reviews (MathSciNet): MR2492622
Zentralblatt MATH: 1200.82029
Digital Object Identifier: doi:10.1063/1.3046561 - El Karoui, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34 2077–2117.Mathematical Reviews (MathSciNet): MR2294977
Zentralblatt MATH: 1108.62014
Digital Object Identifier: doi:10.1214/009117906000000502
Project Euclid: euclid.aop/1171377438 - Forrester, P. J. and Mays, A. (2009). A method to calculate correlation functions for $\beta=1$ random matrices of odd size. J. Stat. Phys. 134 443–462.Mathematical Reviews (MathSciNet): MR2485724
Zentralblatt MATH: 1172.82010
Digital Object Identifier: doi:10.1007/s10955-009-9684-6 - Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist. 36 2638–2716.Mathematical Reviews (MathSciNet): MR2485010
Zentralblatt MATH: 05503373
Digital Object Identifier: doi:10.1214/08-AOS605
Project Euclid: euclid.aos/1231165182 - Johnstone, I. M. (2009). Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Stat. 3 1616–1633.Mathematical Reviews (MathSciNet): MR2752150
Zentralblatt MATH: 1184.62083
Digital Object Identifier: doi:10.1214/08-AOAS220
Project Euclid: euclid.aoas/1267453956 - Ma, Z. (2012). Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18 322–359.Mathematical Reviews (MathSciNet): MR2888709
Digital Object Identifier: doi:10.3150/10-BEJ334
Project Euclid: euclid.bj/1327068628 - Olver, F. W. J. (1974). Asymptotics and Special Functions. Academic Press, New York–London.Mathematical Reviews (MathSciNet): MR435697
- Péché, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 481–516.Mathematical Reviews (MathSciNet): MR2475670
Zentralblatt MATH: 1167.62019
Digital Object Identifier: doi:10.1007/s00440-007-0133-7 - Seiler, E. and Simon, B. (1975). An inequality among determinants. Proc. Natl. Acad. Sci. USA 72 3277–3278.Mathematical Reviews (MathSciNet): MR433247
Zentralblatt MATH: 0313.47011
Digital Object Identifier: doi:10.1073/pnas.72.9.3277 - Shi, W. (2008). A globally uniform asymptotic expansion of the Hermite polynomials. Acta Math. Sci. Ser. B Engl. Ed. 28 834–842.Mathematical Reviews (MathSciNet): MR2462927
Zentralblatt MATH: 1199.41178
Digital Object Identifier: doi:10.1016/S0252-9602(08)60084-3 - Sinclair, C. D. (2009). Correlation functions for $\beta=1$ ensembles of matrices of odd size. J. Stat. Phys. 136 17–33.Mathematical Reviews (MathSciNet): MR2525224
Zentralblatt MATH: 1220.82066
Digital Object Identifier: doi:10.1007/s10955-009-9771-8 - Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 1033–1056.
- Szegő, G. (1967). Orthogonal Polynomials, 3rd ed. Amer. Math. Soc., Providence, RI.Mathematical Reviews (MathSciNet): MR310533
- Tao, T. and Vu, V. (2010). Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 549–572.Mathematical Reviews (MathSciNet): MR2669449
Zentralblatt MATH: 1018.62042
Digital Object Identifier: doi:10.1007/s00220-010-1044-5 - Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151–174.Mathematical Reviews (MathSciNet): MR1257246
Zentralblatt MATH: 0789.35152
Digital Object Identifier: doi:10.1007/BF02100489
Project Euclid: euclid.cmp/1104254495 - Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727–754.Mathematical Reviews (MathSciNet): MR1385083
Zentralblatt MATH: 0851.60101
Digital Object Identifier: doi:10.1007/BF02099545
Project Euclid: euclid.cmp/1104286442 - Tracy, C. A. and Widom, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92 809–835.Mathematical Reviews (MathSciNet): MR1657844
Zentralblatt MATH: 0942.60099
Digital Object Identifier: doi:10.1023/A:1023084324803 - Tracy, C. A. and Widom, H. (2005). Matrix kernels for the Gaussian orthogonal and symplectic ensembles. Ann. Inst. Fourier (Grenoble) 55 2197–2207.
- Wang, X. S. and Wong, R. (2011). Asymptotics of orthogonal polynomials via recurrence relations. Technical report. Available at arXiv:1101.4371.arXiv: 1101.4371
Mathematical Reviews (MathSciNet): MR2903981
Zentralblatt MATH: 1242.41035
Digital Object Identifier: doi:10.1142/S0219530512500108 - Wong, R. and Zhang, L. (2007). Global asymptotics of Hermite polynomials via Riemann-Hilbert approach. Discrete Contin. Dyn. Syst. Ser. B 7 661–682 (electronic).Mathematical Reviews (MathSciNet): MR2291866
Digital Object Identifier: doi:10.3934/dcdsb.2007.7.661

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence
Johnstone, Iain M., The Annals of Statistics, 2008 - A note on the expansion of the smallest eigenvalue distribution of the LUE at the hard edge
Bornemann, Folkmar, The Annals of Applied Probability, 2016 - Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case
Ledoux, Michel, Electronic Journal of Probability, 2004
- Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence
Johnstone, Iain M., The Annals of Statistics, 2008 - A note on the expansion of the smallest eigenvalue distribution of the LUE at the hard edge
Bornemann, Folkmar, The Annals of Applied Probability, 2016 - Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case
Ledoux, Michel, Electronic Journal of Probability, 2004 - The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble
Wang, Dong, The Annals of Probability, 2009 - Asymptotic Independence in the Spectrum of the Gaussian Unitary Ensemble
Bianchi, Pascal, Debbah, Mérouane, and Najim, Jamal, Electronic Communications in Probability, 2010 - A rate of convergence result for the largest eigenvalue of complex white Wishart matrices
El Karoui, Noureddine, The Annals of Probability, 2006 - Application of the $\tau$-function theory of Painlevé
equations to random matrices: $\rm {P}_{\rm VI}$, the JUE, CyUE, cJUE
and scaled limits
Forrester, P. J. and Witte, N. S., Nagoya Mathematical Journal, 2004 - Edge universality of correlation matrices
Pillai, Natesh S. and Yin, Jun, The Annals of Statistics, 2012 - The asymptotics of monotone subsequences of involutions
Baik, Jinho and Rains, Eric M., Duke Mathematical Journal, 2001 - Tracy-Widom asymptotics for a random polymer model with gamma-distributed weights
O'Connell, Neil and Ortmann, Janosch, Electronic Journal of Probability, 2015