The Annals of Applied Probability

Limit theorems for Markov processes indexed by continuous time Galton–Watson trees

Vincent Bansaye, Jean-François Delmas, Laurence Marsalle, and Viet Chi Tran

Full-text: Open access


We study the evolution of a particle system whose genealogy is given by a supercritical continuous time Galton–Watson tree. The particles move independently according to a Markov process and when a branching event occurs, the offspring locations depend on the position of the mother and the number of offspring. We prove a law of large numbers for the empirical measure of individuals alive at time t. This relies on a probabilistic interpretation of its intensity by mean of an auxiliary process. The latter has the same generator as the Markov process along the branches plus additional jumps, associated with branching events of accelerated rate and biased distribution. This comes from the fact that choosing an individual uniformly at time t favors lineages with more branching events and larger offspring number. The central limit theorem is considered on a special case. Several examples are developed, including applications to splitting diffusions, cellular aging, branching Lévy processes.

Article information

Ann. Appl. Probab., Volume 21, Number 6 (2011), 2263-2314.

First available in Project Euclid: 23 November 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60F17: Functional limit theorems; invariance principles 60F15: Strong theorems 60F05: Central limit and other weak theorems

Branching Markov process branching diffusion limit theorems Many-to-One formula size biased reproduction distribution size biased reproduction rate ancestral lineage splitted diffusion


Bansaye, Vincent; Delmas, Jean-François; Marsalle, Laurence; Tran, Viet Chi. Limit theorems for Markov processes indexed by continuous time Galton–Watson trees. Ann. Appl. Probab. 21 (2011), no. 6, 2263--2314. doi:10.1214/10-AAP757.

Export citation


  • [1] Adams, R. A. (1975). Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York.
  • [2] Asmussen, S. and Hering, H. (1976). Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 195–212.
  • [3] Asmussen, S. and Hering, H. (1983). Branching Processes. Progress in Probability and Statistics 3. Birkhäuser, Boston, MA.
  • [4] Athreya, K. B. and Kang, H.-J. (1998). Some limit theorems for positive recurrent branching Markov chains. I, II. Adv. in Appl. Probab. 30 693–710.
  • [5] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 196. Springer, New York.
  • [6] Bansaye, V. (2008). Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab. 18 967–996.
  • [7] Bansaye, V. and Tran, V. C. (2011). Branching Feller diffusion for cell division with parasite infection. ALEA 8 95–127.
  • [8] Benjamini, I. and Peres, Y. (1994). Markov chains indexed by trees. Ann. Probab. 22 219–243.
  • [9] Bercu, B., de Saporta, B. and Gégout-Petit, A. (2009). Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. 14 2492–2526.
  • [10] Bertoin, J. (2001). Homogeneous fragmentation processes. Probab. Theory Related Fields 121 301–318.
  • [11] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge.
  • [12] Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 446–459.
  • [13] Biggins, J. D. (1980). Spatial spread in branching processes. In Biological Growth and Spread (Proc. Conf., Heidelberg, 1979). Lecture Notes in Biomathematics 38 57–67. Springer, Berlin.
  • [14] Chauvin, B., Rouault, A. and Wakolbinger, A. (1991). Growing conditioned trees. Stochastic Process. Appl. 39 117–130.
  • [15] Dawson, D. A. (1993). Measure-valued Markov processes. In École D’Été de Probabilités de Saint-Flour XXI—1991. Lecture Notes in Math. 1541 1–260. Springer, Berlin.
  • [16] Dawson, D. A., Gorostiza, L. G. and Li, Z. (2002). Nonlocal branching superprocesses and some related models. Acta Appl. Math. 74 93–112.
  • [17] Delmas, J. F. and Marsalle, L. (2010). Detection of cellular aging in a Galton–Watson process. Stochastic Process. Appl. 120 2495–2519.
  • [18] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 vi+147.
  • [19] Dynkin, E. B. (1994). An Introduction to Branching Measure-Valued Processes. CRM Monograph Series 6. Amer. Math. Soc., Providence, RI.
  • [20] Engländer, J. and Turaev, D. (2002). A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 683–722.
  • [21] Engländer, J. and Winter, A. (2006). Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 171–185.
  • [22] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [23] Evans, S. N. and Steinsaltz, D. (2007). Damage segregation at fissioning may increase growth rates: A superprocess model. Theoretical Population Biology 71 473–490.
  • [24] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
  • [25] Ferrière, R. and Tran, V. C. (2009). Stochastic and deterministic models for age-structured populations with genetically variable traits. In CANUM 2008. ESAIM Proc. 27 289–310. EDP Sci., Les Ulis.
  • [26] Fournier, N. and Méléard, S. (2004). A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 1880–1919.
  • [27] Geiger, J. (1999). Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Probab. 36 301–309.
  • [28] Geiger, J. (2000). Poisson point process limits in size-biased Galton–Watson trees. Electron. J. Probab. 5 12 pp. (electronic).
  • [29] Geiger, J. and Kauffmann, L. (2004). The shape of large Galton–Watson trees with possibly infinite variance. Random Structures Algorithms 25 311–335.
  • [30] Georgii, H.-O. and Baake, E. (2003). Supercritical multitype branching processes: The ancestral types of typical individuals. Adv. in Appl. Probab. 35 1090–1110.
  • [31] Gorostiza, L. G., Roelly, S. and Wakolbinger, A. (1992). Persistence of critical multitype particle and measure branching processes. Probab. Theory Related Fields 92 313–335.
  • [32] Guyon, J. (2007). Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 1538–1569.
  • [33] Hardy, R. and Harris, S. C. (2009). A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités XLII. Lecture Notes in Math. 1979 281–330. Springer, Berlin.
  • [34] Harris, S. C. and Roberts, M. I. (2009). Branching Brownian motion: Almost sure growth along scaled paths. Preprint. Available at
  • [35] Harris, T. E. (1963). The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 119. Springer, Berlin.
  • [36] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam.
  • [37] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin.
  • [38] Joffe, A. and Métivier, M. (1986). Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 20–65.
  • [39] Kallenberg, O. (1977). Stability of critical cluster fields. Math. Nachr. 77 7–43.
  • [40] Lambert, A. (2010). The contour of splitting trees is a Lévy process. Ann. Probab. 38 348–395.
  • [41] Liemant, A., Matthes, K. and Wakolbinger, A. (1988). Equilibrium Distributions of Branching Processes. Mathematics and Its Applications (East European Series) 34. Kluwer, Dordrecht.
  • [42] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 1125–1138.
  • [43] Meleard, S. (1998). Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations. Stochastics Stochastics Rep. 63 195–225.
  • [44] Métivier, M. (1984). Convergence faible et principe d’invariance pour des martingales à valeurs dans des espaces de Sobolev. Ann. Inst. H. Poincaré Probab. Statist. 20 329–348.
  • [45] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. in Appl. Probab. 25 487–517.
  • [46] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. III. Foster–Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 518–548.
  • [47] Nerman, O. and Jagers, P. (1984). The stable double infinite pedigree process of supercritical branching populations. Z. Wahrsch. Verw. Gebiete 65 445–460.
  • [48] Norris, J. R. (1998). Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics 2. Cambridge Univ. Press, Cambridge.
  • [49] Olofsson, P. (2009). Size-biased branching population measures and the multi-type xlogx condition. Bernoulli 15 1287–1304.
  • [50] Roelly, S. and Rouault, A. (1990). Construction et propriétés de martingales des branchements spatiaux interactifs. International Statistical Review 58 173–189.
  • [51] Rouault, A. (2000). Large deviations and branching processes. In Proceedings of the 9th International Summer School on Probability Theory and Mathematical Statistics (Sozopol, 1997) 13 15–38.
  • [52] Samuels, M. L. (1971). Distribution of the branching-process population among generations. J. Appl. Probab. 8 655–667.
  • [53] Stewart, E. J., Madden, R., Paul, G. and Taddei, F. (2005). Aging and death in a organism that reproduces by morphologically symmetric division. PLoS Biol. 3 295–300.
  • [54] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Springer, Berlin.
  • [55] Tran, V. C. (2006). Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. Ph.D. thesis, Univ. Paris X, Nanterre. Available at