The Annals of Applied Probability

Central limit theorem for Hotelling’s T2 statistic under large dimension

G. M. Pan and W. Zhou

Full-text: Open access

Abstract

In this paper we prove the central limit theorem for Hotelling’s T2 statistic when the dimension of the random vectors is proportional to the sample size.

Article information

Source
Ann. Appl. Probab., Volume 21, Number 5 (2011), 1860-1910.

Dates
First available in Project Euclid: 25 October 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1319576611

Digital Object Identifier
doi:10.1214/10-AAP742

Mathematical Reviews number (MathSciNet)
MR2884053

Subjects
Primary: 15B52: Random matrices 60F15: Strong theorems 62E20: Asymptotic distribution theory
Secondary: 60F17: Functional limit theorems; invariance principles

Keywords
Hotelling’s T2 statistic sample means sample covariance matrices central limit theorem Stieltjes transform

Citation

Pan, G. M.; Zhou, W. Central limit theorem for Hotelling’s T 2 statistic under large dimension. Ann. Appl. Probab. 21 (2011), no. 5, 1860--1910. doi:10.1214/10-AAP742. https://projecteuclid.org/euclid.aoap/1319576611


Export citation

References

  • [1] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New York.
  • [2] Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist. Sinica 6 311–329.
  • [3] Bai, Z. D., Miao, B. Q. and Pan, G. M. (2007). On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 1532–1572.
  • [4] Bai, Z. D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316–345.
  • [5] Bai, Z. D. and Silverstein, J. W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 553–605.
  • [6] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • [7] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley, New York.
  • [8] Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19–42.
  • [9] Diaconis, P. and Evans, S. N. (2001). Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 2615–2633.
  • [10] Hotelling, H. (1931). The generalization of Student’s ratio. Ann. Math. Statist. 2 360–378.
  • [11] Jiang, T. (2004). The limiting distributions of eigenvalues of sample correlation matrices. Sankhyā 66 35–48.
  • [12] Johansson, K. (1998). On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 151–204.
  • [13] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295–327.
  • [14] Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1–38.
  • [15] Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses, 3rd ed. Springer, New York.
  • [16] Marčenko, V. A. and Pastur, L. A. (1967). Distribution for some sets of random matrices. Math. USSR-Sb. 1 457–483.
  • [17] Pan, G. M. and Zhou, W. (2008). Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 1232–1270.
  • [18] Silverstein, J. W. (1989). On the eigenvectors of large-dimensional sample covariance matrices. J. Multivariate Anal. 30 1–16.
  • [19] Silverstein, J. W. (1990). Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 1174–1194.
  • [20] Silverstein, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 331–339.
  • [21] Sinai, Y. and Soshnikov, A. (1998). Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.) 29 1–24.
  • [22] Wachter, K. W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6 1–18.
  • [23] Xiao, H. and Zhou, W. (2010). Almost sure limit of the smallest eigenvalue of some sample correlation matrices. J. Theoret. Probab. 23 1–20.
  • [24] Yin, Y. Q. (1986). Limiting spectral distribution for a class of random matrices. J. Multivariate Anal. 20 50–68.
  • [25] Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. (1988). On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 509–521.