The Annals of Applied Probability

A probabilistic numerical method for fully nonlinear parabolic PDEs

Arash Fahim, Nizar Touzi, and Xavier Warin

Full-text: Open access

Abstract

We consider the probabilistic numerical scheme for fully nonlinear partial differential equations suggested in [Comm. Pure Appl. Math. 60 (2007) 1081–1110] and show that it can be introduced naturally as a combination of Monte Carlo and finite difference schemes without appealing to the theory of backward stochastic differential equations. Our first main result provides the convergence of the discrete-time approximation and derives a bound on the discretization error in terms of the time step. An explicit implementable scheme requires the approximation of the conditional expectation operators involved in the discretization. This induces a further Monte Carlo error. Our second main result is to prove the convergence of the latter approximation scheme and to derive an upper bound on the approximation error. Numerical experiments are performed for the approximation of the solution of the mean curvature flow equation in dimensions two and three, and for two- and five-dimensional (plus time) fully nonlinear Hamilton–Jacobi–Bellman equations arising in the theory of portfolio optimization in financial mathematics.

Article information

Source
Ann. Appl. Probab., Volume 21, Number 4 (2011), 1322-1364.

Dates
First available in Project Euclid: 8 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1312818838

Digital Object Identifier
doi:10.1214/10-AAP723

Mathematical Reviews number (MathSciNet)
MR2857450

Zentralblatt MATH identifier
1230.65009

Subjects
Primary: 65C05: Monte Carlo methods
Secondary: 49L25: Viscosity solutions

Keywords
Viscosity solutions monotone schemes Monte Carlo approximation second order backward stochastic differential equations

Citation

Fahim, Arash; Touzi, Nizar; Warin, Xavier. A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21 (2011), no. 4, 1322--1364. doi:10.1214/10-AAP723. https://projecteuclid.org/euclid.aoap/1312818838


Export citation

References

  • [1] Andersen, L. B. G. and Brotherton-Ratcliffe, R. (2005). Extended LIBOR market models with stochastic volatility. Journal of Computational Finance 9 1–40.
  • [2] Bally, V. (1997). Approximation scheme for solutions of BSDE. In Backward Stochastic Differential Equations (Paris, 19951996). Pitman Res. Notes Math. Ser. 364 177–191. Longman, Harlow.
  • [3] Barles, G. and Jakobsen, E. R. (2002). On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations. M2AN Math. Model. Numer. Anal. 36 33–54.
  • [4] Barles, G. and Jakobsen, E. R. (2005). Error bounds for monotone approximation schemes for Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 43 540–558 (electronic).
  • [5] Barles, G. and Jakobsen, E. R. (2007). Error bounds for monotone approximation schemes for parabolic Hamilton–Jacobi–Bellman equations. Math. Comp. 76 1861–1893 (electronic).
  • [6] Barles, G. and Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4 271–283.
  • [7] Bonnans, J. F. and Zidani, H. (2003). Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 1008–1021 (electronic).
  • [8] Bouchard, B., Ekeland, I. and Touzi, N. (2004). On the Malliavin approach to Monte Carlo approximation of conditional expectations. Finance Stoch. 8 45–71.
  • [9] Bouchard, B. and Touzi, N. (2004). Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 175–206.
  • [10] Camilli, F. and Falcone, M. (1995). An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29 97–122.
  • [11] Camilli, F. and Jakobsen, E. R. (2009). A finite element like scheme for integro-partial differential Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 47 2407–2431.
  • [12] Cheridito, P., Soner, H. M., Touzi, N. and Victoir, N. (2007). Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math. 60 1081–1110.
  • [13] Chevance, D. (1996). Résolution numériques des équations différentielles stochastiques rétrogrades. Ph.D. thesis, Univ. Provence.
  • [14] Crisan, D., Manolarakis, K. and Touzi, N. (2010). On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights. Stochastic Process. Appl. 120 1133–1158.
  • [15] Debrabant, K. and Jakobsen, E. R. (2009). Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Preprint.
  • [16] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1–71.
  • [17] Gobet, E., Lemor, J.-P. and Warin, X. (2005). A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15 2172–2202.
  • [18] Heston, S. L. (1993). A closed–form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies 6 327–343.
  • [19] Kahl, C. and Jäckel, P. (2006). Fast strong approximation Monte Carlo schemes for stochastic volatility models. Quant. Finance 6 513–536.
  • [20] Kohn, R. V. and Serfaty, S. (2010). A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Comm. Pure Appl. Math. 63 1298–1350.
  • [21] Krylov, N. V. (1997). On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz 9 245–256.
  • [22] Krylov, N. V. (2000). On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Related Fields 117 1–16.
  • [23] Krylov, N. V. (2005). The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 365–399.
  • [24] Lions, P. L. and Regnier, H. (2001). Calcul du prix et des sensibilités d’une option américaine par une méthode de Monte Carlo. Preprint.
  • [25] Longstaff, F. A. and Schwartz, R. S. (2001). Valuing American options by simulation: A simple least-square approach. The Review of Financial Studies 14 113–147.
  • [26] Lord, R., Koekkoek, R. and Van Dijk, D. (2010). A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance 10 177–194.
  • [27] Munos, R. and Zidani, H. (2005). Consistency of a simple multidimensional scheme for Hamilton–Jacobi–Bellman equations. C. R. Math. Acad. Sci. Paris 340 499–502.
  • [28] Soner, H. M. and Touzi, N. (2003). A stochastic representation for mean curvature type geometric flows. Ann. Probab. 31 1145–1165.
  • [29] Zariphopoulou, T. (2001). A solution approach to valuation with unhedgeable risks. Finance Stoch. 5 61–82.
  • [30] Zhang, J. (2004). A numerical scheme for BSDEs. Ann. Appl. Probab. 14 459–488.