The Annals of Applied Probability

Sharpness of the percolation transition in the two-dimensional contact process

J. van den Berg

Full-text: Open access

Abstract

For ordinary (independent) percolation on a large class of lattices it is well known that below the critical percolation parameter pc the cluster size distribution has exponential decay and that power-law behavior of this distribution can only occur at pc. This behavior is often called “sharpness of the percolation transition.”

For theoretical reasons, as well as motivated by applied research, there is an increasing interest in percolation models with (weak) dependencies. For instance, biologists and agricultural researchers have used (stationary distributions of) certain two-dimensional contact-like processes to model vegetation patterns in an arid landscape (see [20]). In that context occupied clusters are interpreted as patches of vegetation. For some of these models it is reported in [20] that computer simulations indicate power-law behavior in some interval of positive length of a model parameter. This would mean that in these models the percolation transition is not sharp.

This motivated us to investigate similar questions for the ordinary (“basic”) 2D contact process with parameter λ. We show, using techniques from Bollobás and Riordan [8, 11], that for the upper invariant measure ν̄λ of this process the percolation transition is sharp. If λ is such that (ν̄λ-a.s.) there are no infinite clusters, then for all parameter values below λ the cluster-size distribution has exponential decay.

Article information

Source
Ann. Appl. Probab., Volume 21, Number 1 (2011), 374-395.

Dates
First available in Project Euclid: 17 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1292598039

Digital Object Identifier
doi:10.1214/10-AAP702

Mathematical Reviews number (MathSciNet)
MR2778387

Zentralblatt MATH identifier
1247.60136

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 92D40: Ecology 92D30: Epidemiology 82B43: Percolation [See also 60K35]

Keywords
Percolation contact process sharp transition approximate zero-one law sharp thresholds

Citation

van den Berg, J. Sharpness of the percolation transition in the two-dimensional contact process. Ann. Appl. Probab. 21 (2011), no. 1, 374--395. doi:10.1214/10-AAP702. https://projecteuclid.org/euclid.aoap/1292598039


Export citation

References

  • [1] Aizenman, M. and Barsky, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489–526.
  • [2] Bálint, A., Camia, F. and Meester, R. (2009). Sharp phase transition and critical behaviour in 2D divide and colour models. Stochastic Process. Appl. 119 937–965.
  • [3] van den Berg, J. (2008). Approximate zero-one laws and sharpness of the percolation transition in a class of models including two-dimensional Ising percolation. Ann. Probab. 36 1880–1903.
  • [4] van den Berg, J., Brouwer, R. and Vágvölgyi, B. (2008). Box-crossings and continuity results for self-destructive percolation in the plane. In In and Out of Equilibrium 2 (V. Sidoravičius and M.-E. Vares, eds.). Progress in Probability 60 117–135. Birkhäuser, Basel.
  • [5] van den Berg, J. and Steif, J. E. (1999). On the existence and nonexistence of finitary codings for a class of random fields. Ann. Probab. 27 1501–1522.
  • [6] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482.
  • [7] Bezuidenhout, C. and Grimmett, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984–1009.
  • [8] Bollobás, B. and Riordan, O. (2006). The critical probability for random Voronoi percolation in the plane is 1∕2. Probab. Theory Related Fields 136 417–468.
  • [9] Bollobás, B. and Riordan, O. (2006). Sharp thresholds and percolation in the plane. Random Structures Algorithms 29 524–548.
  • [10] Bollobás, B. and Riordan, O. (2006). Percolation. Cambridge Univ. Press, New York.
  • [11] Bollobás, B. and Riordan, O. (2008). Percolation on random Johnson–Mehl tessellations and related models. Probab. Theory Related Fields 140 319–343.
  • [12] Bollobás, B. and Riordan, O. (2009). Erratum: Percolation on random Johnson–Mehl tessellations and related models. Available at arXiv:0905.1275v1.
  • [13] Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y. and Linial, N. (1992). The influence of variables in product spaces. Israel J. Math. 77 55–64.
  • [14] Chayes, J. T. and Chayes, L. (1986). Percolation and random media. In Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge, Part I, II (Les Houches, 1984) 1001–1142. North-Holland, Amsterdam.
  • [15] Friedgut, E. and Kalai, G. (1996). Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 2993–3002.
  • [16] Graham, B. T. and Grimmett, G. R. (2006). Influence and sharp-threshold theorems for monotonic measures. Ann. Probab. 34 1726–1745.
  • [17] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [18] Higuchi, Y. (1993). A sharp transition for the two-dimensional Ising percolation. Probab. Theory Related Fields 97 489–514.
  • [19] Kahn, J., Kalai, G. and Linial, N. (1988). The influence of variables on Boolean functions. In Proc. 29th Annual Symposium on Foundations of Computer Science 68–80. Computer Society Press.
  • [20] Kéfi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., Elaich, A. and de Ruiter, P. C. (2007). Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449 213–217.
  • [21] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals ½. Comm. Math. Phys. 74 41–59.
  • [22] Kesten, H. (1981). Analyticity properties and power law estimates of functions in percolation theory. J. Stat. Phys. 25 717–756.
  • [23] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [24] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 324. Springer, Berlin.
  • [25] Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 223–243.
  • [26] Menshikov, M. V. (1986). Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288 1308–1311.
  • [27] Rossignol, R. (2008). Threshold phenomena on product spaces: BKKKL revisited (once more). Electron. Commun. Probab. 13 35–44.
  • [28] Russo, L. (1982). An approximate zero-one law. Z. Wahrsch. Verw. Gebiete 61 129–139.
  • [29] Talagrand, M. (1994). On Russo’s approximate zero-one law. Ann. Probab. 22 1576–1587.