The Annals of Applied Probability

First passage percolation on random graphs with finite mean degrees

Shankar Bhamidi, Remco van der Hofstad, and Gerard Hooghiemstra

Full-text: Open access

Abstract

We study first passage percolation on the configuration model. Assuming that each edge has an independent exponentially distributed edge weight, we derive explicit distributional asymptotics for the minimum weight between two randomly chosen connected vertices in the network, as well as for the number of edges on the least weight path, the so-called hopcount.

We analyze the configuration model with degree power-law exponent τ>2, in which the degrees are assumed to be i.i.d. with a tail distribution which is either of power-law form with exponent τ−1>1, or has even thinner tails (τ=∞). In this model, the degrees have a finite first moment, while the variance is finite for τ>3, but infinite for τ∈(2, 3).

We prove a central limit theorem for the hopcount, with asymptotically equal means and variances equal to αlogn, where α∈(0, 1) for τ∈(2, 3), while α>1 for τ>3. Here n denotes the size of the graph. For τ∈(2, 3), it is known that the graph distance between two randomly chosen connected vertices is proportional to loglogn [Electron. J. Probab. 12 (2007) 703–766], that is, distances are ultra small. Thus, the addition of edge weights causes a marked change in the geometry of the network. We further study the weight of the least weight path and prove convergence in distribution of an appropriately centered version.

This study continues the program initiated in [J. Math. Phys. 49 (2008) 125218] of showing that logn is the correct scaling for the hopcount under i.i.d. edge disorder, even if the graph distance between two randomly chosen vertices is of much smaller order. The case of infinite mean degrees (τ∈[1, 2)) is studied in [Extreme value theory, Poisson–Dirichlet distributions and first passage percolation on random networks (2009) Preprint] where it is proved that the hopcount remains uniformly bounded and converges in distribution.

Article information

Source
Ann. Appl. Probab., Volume 20, Number 5 (2010), 1907-1965.

Dates
First available in Project Euclid: 25 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1282747405

Digital Object Identifier
doi:10.1214/09-AAP666

Mathematical Reviews number (MathSciNet)
MR2724425

Zentralblatt MATH identifier
1213.60157

Subjects
Primary: 60C05: Combinatorial probability 05C80: Random graphs [See also 60B20] 90B15: Network models, stochastic

Keywords
Flows random graph first passage percolation hopcount central limit theorem coupling to continuous-time branching processes universality

Citation

Bhamidi, Shankar; van der Hofstad, Remco; Hooghiemstra, Gerard. First passage percolation on random graphs with finite mean degrees. Ann. Appl. Probab. 20 (2010), no. 5, 1907--1965. doi:10.1214/09-AAP666. https://projecteuclid.org/euclid.aoap/1282747405


Export citation

References

  • [1] Addario-Berry, L., Broutin, N. and Lugosi, G. (2010). The longest minimum-weight path in a complete graph. Preprint. Combin. Probab. Comput. 19 1–19.
  • [2] Athreya, K. B. and Karlin, S. (1967). Limit theorems for the split times of branching processes. J. Math. Mech. 17 257–277.
  • [3] Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover, Mineola, NY.
  • [4] Bertoin, J. and Sidoravicius, V. (2009). The structure of typical clusters in large sparse random configurations. J. Stat. Phys. 135 87–105.
  • [5] Bhamidi, S. (2008). First passage percolation on locally treelike networks. I. Dense random graphs. J. Math. Phys. 49 125218.
  • [6] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2009). Extreme value theory, Poisson–Dirichlet distributions and first passage percolation on random networks. Preprint.
  • [7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge.
  • [8] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.
  • [9] Braunstein, L. A., Buldyrev, S. V., Cohen, R., Havlin, S. and Stanley, H. E. (2003). Optimal paths in disordered complex networks. Phys. Rev. Lett. 91 168701.
  • [10] Bühler, W. J. (1971). Generations and degree of relationship in supercritical Markov branching processes. Z. Wahrsch. Verw. Gebiete 18 141–152.
  • [11] Chung, F. and Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1 91–113.
  • [12] Chung, F. and Lu, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics 107. Amer. Math. Soc., Providence, RI.
  • [13] Cohen, R. and Havlin, S. (2003). Scale-free networks are ultrasmall. Phys. Rev. Lett. 90 058701.
  • [14] Deijfen, M., van den Esker, H., van der Hofstad, R. and Hooghiemstra, G. (2009). A preferential attachment model with random initial degrees. Ark. Mat. 47 41–72.
  • [15] Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2009). Diameters in supercritical random graphs via first passage percolation. Preprint. Available at http://arxiv.org/abs/0906.1840.
  • [16] Dommers, S., van der Hofstad, R. and Hooghiemstra, G. (2010). Diameters in preferential attachment graphs. J. Stat. Phys. 139 72–107.
  • [17] Durrett, R. (2007). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
  • [18] Fernholz, D. and Ramachandran, V. (2007). The diameter of sparse random graphs. Random Structures Algorithms 31 482–516.
  • [19] Gut, A. (2005). Probability: A Graduate Course. Springer, New York.
  • [20] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Bernouilli–Bayes–Laplace: Anniversary Volume 61–110. Springer, New York.
  • [21] Howard, C. D. (2004). Models of first-passage percolation. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 125–173. Springer, Berlin.
  • [22] Janson, S. (1999). One, two and three times logn/n for paths in a complete graph with random weights. Combin. Probab. Comput. 8 347–361.
  • [23] Janson, S. (2009). The probability that a random multigraph is simple. Combin. Probab. Comput. 18 205–225.
  • [24] Janson, S. and Luczak, M. J. (2009). A new approach to the giant component problem. Random Structures Algorithms 34 197–216.
  • [25] Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. Wiley, New York.
  • [26] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. In Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs’93 (Poznań, 1993) 6 161–179. Wiley, New York.
  • [27] Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combin. Probab. Comput. 7 295–305.
  • [28] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75.
  • [29] Reittu, H. and Norros, I. (2004). On the power law random graph model of massive data networks. Performance Evaluation 55 3–23.
  • [30] Smythe, R. T. and Wierman, J. C. (1978). First-Passage Percolation on the Square Lattice. Lecture Notes in Math. 671. Springer, Berlin.
  • [31] van den Esker, H., van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Distances in random graphs with infinite mean degrees. Extremes 8 111–141.
  • [32] van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2001). First-passage percolation on the random graph. Probab. Engrg. Inform. Sci. 15 225–237.
  • [33] van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2002). The flooding time in random graphs. Extremes 5 111–129.
  • [34] van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2005). Distances in random graphs with finite variance degrees. Random Structures Algorithms 27 76–123.
  • [35] van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2007). Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12 703–766 (electronic).
  • [36] Van Mieghem, P., Hooghiemstra, G. and van der Hofstad, R. (2000). A scaling law for the hopcount. Technical report 2000125, Delft Univ. Technology. Available at http://www.nas.ewi.tudelft.nl/people/Piet/.
  • [37] Wästlund, J. (2006). Random assignment and shortest path problems. In Proceedings of the Fourth Colloquium on Mathematics and Computer Science, Institut. Élie Cartan, Nancy France. DMTCS Proc. AG 31–38.