The Annals of Applied Probability

Degenerate diffusions arising from gene duplication models

Rick Durrett and Lea Popovic

Full-text: Open access

Abstract

We consider two processes that have been used to study gene duplication, Watterson’s [Genetics 105 (1983) 745–766] double recessive null model and Lynch and Force’s [Genetics 154 (2000) 459–473] subfunctionalization model. Though the state spaces of these diffusions are two and six-dimensional, respectively, we show in each case that the diffusion stays close to a curve. Using ideas of Katzenberger [Ann. Probab. 19 (1991) 1587–1628] we show that one-dimensional projections converge to diffusion processes, and we obtain asymptotics for the time to loss of one gene copy. As a corollary we find that the probability of subfunctionalization decreases exponentially fast as the population size increases. This rigorously confirms a result Ward and Durrett [Theor. Pop. Biol. 66 (2004) 93–100] found by simulation that the likelihood of subfunctionalization for gene duplicates decays exponentially fast as the population size increases.

Article information

Source
Ann. Appl. Probab., Volume 19, Number 1 (2009), 15-48.

Dates
First available in Project Euclid: 20 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1235140331

Digital Object Identifier
doi:10.1214/08-AAP530

Mathematical Reviews number (MathSciNet)
MR2498670

Zentralblatt MATH identifier
1211.60038

Subjects
Primary: 60J60: Diffusion processes [See also 58J65] 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx] 92D15: Problems related to evolution 92D20: Protein sequences, DNA sequences

Keywords
Gene duplication subfunctionalization one-dimensional diffusions Lyapunov function

Citation

Durrett, Rick; Popovic, Lea. Degenerate diffusions arising from gene duplication models. Ann. Appl. Probab. 19 (2009), no. 1, 15--48. doi:10.1214/08-AAP530. https://projecteuclid.org/euclid.aoap/1235140331


Export citation

References

  • Bailey, G. S., Poulter, R. T. M. and Stockwell, P. A. (1978). Gene duplication in tetraploid fish: Model for gene silencing at unlinked duplicated loci. Proc. Natl. Acad. Sci. USA 73 5575–5579.
  • Bailey, J. A. (2002). Recent segmental duplications in the human genome. Science 297 1003–1007.
  • Durrett, R. (1996). Stochastic Calculus. Probability and Stochastics Series. CRC Press, Boca Raton, FL. A practical introduction.
  • Force, A. (1999). Preservation of duplicate genes by complementary degenerative mutations. Genetics 151 1531–1545.
  • Friedlin, M. I. and Wentzell, A. D. (1988). Random Perturbations of Dynamical Systems. Springer, New York.
  • Hughes, M. K. and Hughes, A. L. (1993). Evolution of duplicate genes in the tetraploid animal Xenopus laevis. Mol. Biol. Evol. 10 1360–1369.
  • Katzenberger, G. S. (1991). Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann. Probab. 19 1587–1628.
  • Kimura, M. (1980). Average time until fixation of a mutant allele in a finite population under continued mutation pressure: Studies by analytical, numerical, and pseudo-sampling methods. Proc. Natl. Acad. Sci. USA 77 522–526.
  • Kimura, M. and King, J. L. (1979). Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc. Natl. Acad. Sci. 76 2858–2861.
  • Kurtz, T. G. and Protter, P. E. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 1035–1070.
  • Li, W. H. (1980). Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes. Genetics 95 237–258.
  • Lynch, M. and Force, A. (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics 154 459–473.
  • Murray, J. D. (1989). Mathematical Biology. Springer, New York.
  • Ohno, S. (1970). Evolution by Gene Duplication. Springer, Berlin.
  • Prince, V. E. and Pickett, F. B. (2002). Splitting pairs: The diverging fates of duplicated genes. Nat. Rev. Genet. 3 827–837.
  • Seoighe, C. and Wolfe, K. H. (1998). Extent of genome rearrangement after genome duplication in yeast. Proc. Natl. Acad. Sci. USA 95 4447–4452.
  • Seoighe, C. and Wolfe, K. H. (1999). Updated map of duplicated regions in the yeast genome. Genetics 238 253–261.
  • Takahata, N. and Maruyama, T. (1979). Polymorphism and loss of duplicate gene expression: A theoretical study with tetraploid fish. Proc. Natl. Acad. Sci. USA 76 4521–4525.
  • Taylor, J. S. and Raes, J. (2004). Duplication and divergence: The evolution of new genes and old ideas. Ann. Rev. Genet. 38 615–643.
  • Ward, R. and Durrett, R. (2004). Subfunctionalization: How often does it occur? How long does it take? Theor. Popul. Biol. 66 93–100.
  • Walsh, J. B. (1995). How often do duplicated genes evolve new functions? Genetics 139 421–428.
  • Watterson, G. A. (1983). On the time for gene silencing at duplicate loci. Genetics 105 745–766.
  • Wen, Z., Rupasinghe, S., Niu, G., Berenbaum, M. R. and Schuler, M. A. (2006). CYP6B1 and CYP6B3 of the Black Swallowtail (Papilio polyxenes): Adaptive evolution through subfunctionalization. Mol. Biol. Evol. 23 2434–2443.
  • Wolfe, K. H. and Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387 708–713.