The Annals of Applied Probability

Linear and quadratic functionals of random hazard rates: An asymptotic analysis

Giovanni Peccati and Igor Prünster

Full-text: Open access


A popular Bayesian nonparametric approach to survival analysis consists in modeling hazard rates as kernel mixtures driven by a completely random measure. In this paper we derive asymptotic results for linear and quadratic functionals of such random hazard rates. In particular, we prove central limit theorems for the cumulative hazard function and for the path-second moment and path-variance of the hazard rate. Our techniques are based on recently established criteria for the weak convergence of single and double stochastic integrals with respect to Poisson random measures. The findings are illustrated by considering specific models involving kernels and random measures commonly exploited in practice. Our abstract results are of independent theoretical interest and can be applied to other areas dealing with Lévy moving average processes. The strictly Bayesian analysis is further explored in a companion paper, where our results are extended to accommodate posterior analysis.

Article information

Ann. Appl. Probab., Volume 18, Number 5 (2008), 1910-1943.

First available in Project Euclid: 30 October 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G57: Random measures 62G20: Asymptotic properties

Asymptotics Bayesian nonparametrics central limit theorem completely random measure multiple Wiener–Itô integral path-variance random hazard rate survival analysis


Peccati, Giovanni; Prünster, Igor. Linear and quadratic functionals of random hazard rates: An asymptotic analysis. Ann. Appl. Probab. 18 (2008), no. 5, 1910--1943. doi:10.1214/07-AAP509.

Export citation


  • [1] Aalen, O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist. 6 701–726.
  • [2] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 167–241.
  • [3] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 929–953.
  • [4] Cifarelli, D. M. and Melilli, E. (2000). Some new results for Dirichlet priors. Ann. Statist. 28 1390–1413.
  • [5] Cifarelli, D. M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429–442.
  • [6] De Blasi, P. and Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with logistic relative risk. Scand. J. Statist. 34 229–257.
  • [7] De Blasi, P., Peccati, G. and Prünster, I. (2007). Asymptotics for posterior hazards. Technical report. Submitted.
  • [8] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York.
  • [9] Deheuvels, P., Peccati, G. and Yor, M. (2006). On quadratic functionals of the Brownian sheet and related processes. Stochastic Process. Appl. 116 493–538.
  • [10] Doksum, K. (1974). Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2 183–201.
  • [11] Drăghici, L. and Ramamoorthi, R. V. (2003). Consistency of Dykstra–Laud priors. Sankhyā 65 464–481.
  • [12] Dykstra, R. L. and Laud, P. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9 356–367.
  • [13] Epifani, I., Lijoi, A. and Prünster, I. (2003). Exponential functionals and means of neutral-to-the-right priors. Biometrika 90 791–808.
  • [14] Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615–629.
  • [15] Ferguson, T. S. and Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Ann. Statist. 7 163–186.
  • [16] Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer, New York.
  • [17] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18 1259–1294.
  • [18] Ho, M.-W. (2006). A Bayes method for a monotone hazard rate via S-paths. Ann. Statist. 34 820–836.
  • [19] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161–173.
  • [20] Ishwaran, H. and James, L. F. (2004). Computational methods for multiplicative intensity models using weighted gamma processes: Proportional hazards, marked point processes, and panel count data. J. Amer. Statist. Assoc. 99 175–190.
  • [21] James, L. F. (2003). Bayesian calculus for gamma processes with applications to semiparametric intensity models. Sankhyā 65 179–206.
  • [22] James, L. F. (2005). Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33 1771–1799.
  • [23] James, L. F. (2006). Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34 416–440.
  • [24] Kalbfleisch, J. D. (1978). Non-parametric Bayesian analysis of survival time data. J. Roy. Statist. Soc. Ser. B 40 214–221.
  • [25] Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Ann. Statist. 27 562–588.
  • [26] Kim, Y. and Lee, J. (2003). Bayesian analysis of proportional hazard models. Ann. Statist. 31 493–511.
  • [27] Kingman, J. F. C. (1967). Completely random measures. Pacific J. Math. 21 59–78.
  • [28] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York.
  • [29] Kwapień, S. and Woyczyński, W. A. (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston, MA.
  • [30] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278–1291.
  • [31] Lo, A. Y. (1982). Bayesian nonparametric statistical inference for Poisson point processes. Z. Wahrsch. Verw. Gebiete 59 55–66.
  • [32] Lo, A. Y. and Weng, C.-S. (1989). On a class of Bayesian nonparametric estimates. II. Hazard rate estimates. Ann. Inst. Statist. Math. 41 227–245.
  • [33] Nieto-Barajas, L. E. and Walker, S. G. (2004). Bayesian nonparametric survival analysis via Lévy driven Markov processes. Statist. Sinica 14 1127–1146.
  • [34] Nieto-Barajas, L. E. and Walker, S. G. (2005). A semi-parametric Bayesian analysis of survival data based on Lévy-driven processes. Lifetime Data Anal. 11 529–543.
  • [35] Nualart, D. and Vives, J. (1990). Anticipative calculus for the Poisson process based on the Fock space. In Séminaire de Probabilités XXIV, 1988/89. Lecture Notes in Mathematics 1426 154–165. Springer, Berlin.
  • [36] Peccati, G. (2001). On the convergence of multiple random integrals. Studia Sci. Math. Hungar. 37 429–470.
  • [37] Peccati, G. and Taqqu, M. S. (2007). Limit theorems for multiple stochastic integrals. Preprint. Available at
  • [38] Peccati, G. and Taqqu, M. S. (2007). Central limit theorems for double Poisson integrals. Bernoulli. To appear.
  • [39] Peccati, G. and Taqqu, M. S. (2007). Stable convergence of generalized L2 stochastic integrals and the principle of conditioning. Electron. J. Probab. 12 no. 15, 447–480 (electronic).
  • [40] Peccati, G. and Tudor, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics 1857 247–262. Springer, Berlin.
  • [41] Regazzini, E., Guglielmi, A. and Di Nunno, G. (2002). Theory and numerical analysis for exact distributions of functionals of a Dirichlet process. Ann. Statist. 30 1376–1411.
  • [42] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560–585.
  • [43] Rota, G.-C. and Wallstrom, T. C. (1997). Stochastic integrals: A combinatorial approach. Ann. Probab. 25 1257–1283.
  • [44] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. (Translated from the Japanese.)
  • [45] Surgailis, D. (1984). On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 217–239.
  • [46] Surgailis, D. (2003). Non-CLTs: U-statistics, multinomial formula and approximations of multiple Itô–Wiener integrals. In Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheim and M.S. Taqqu, eds.) 129–142. Birkhäuser, Boston, MA.
  • [47] Walker, S. and Damien, P. (1998). A full Bayesian non-parametric analysis involving a neutral to the right process. Scand. J. Statist. 25 669–680.
  • [48] Walker, S. and Muliere, P. (1997). Beta-Stacy processes and a generalization of the Pólya-urn scheme. Ann. Statist. 25 1762–1780.
  • [49] Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika 85 251–267.
  • [50] Wolpert, R. L. and Taqqu, R. L. (2005). Fractional Ornstein–Uhlenbeck Lévy processes and the Telecom process. Signal Process. 85 1523–1545.