The Annals of Applied Probability

The emergence of the deterministic Hodgkin–Huxley equations as a limit from the underlying stochastic ion-channel mechanism

Tim D. Austin

Full-text: Open access

Abstract

In this paper we consider the classical differential equations of Hodgkin and Huxley and a natural refinement of them to include a layer of stochastic behavior, modeled by a large number of finite-state-space Markov processes coupled to a simple modification of the original Hodgkin–Huxley PDE. We first prove existence, uniqueness and some regularity for the stochastic process, and then show that in a suitable limit as the number of stochastic components of the stochastic model increases and their individual contributions decrease, the process that they determine converges to the trajectory predicted by the deterministic PDE, uniformly up to finite time horizons in probability. In a sense, this verifies the consistency of the deterministic and stochastic processes.

Article information

Source
Ann. Appl. Probab., Volume 18, Number 4 (2008), 1279-1325.

Dates
First available in Project Euclid: 21 July 2008

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1216677123

Digital Object Identifier
doi:10.1214/07-AAP494

Mathematical Reviews number (MathSciNet)
MR2434172

Zentralblatt MATH identifier
1157.60066

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 60K99: None of the above, but in this section 92C20: Neural biology

Keywords
Hodgkin–Huxley equations stochastic Hodgkin–Huxley equations action potential convergence of Markov processes nonlinear parabolic PDE

Citation

Austin, Tim D. The emergence of the deterministic Hodgkin–Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18 (2008), no. 4, 1279--1325. doi:10.1214/07-AAP494. https://projecteuclid.org/euclid.aoap/1216677123


Export citation

References

  • [1] Chow, C. C. and White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophys. J. 71 3013–3021.
  • [2] Cronin, J. (1987). Mathematical Aspects of Hodgkin–Huxley Neural Theory. Cambridge Univ. Press.
  • [3] DeFelice, L. J. and Isaac, A. (1992). Chaotic states in a random world. J. Stat. Phys. 70 339–352.
  • [4] Darling, R. W. R. Fluid limits of pure jump Markov processes: A practical guide. Available at arXiv:math.PR/0210109.
  • [5] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [6] Evans, J. and Shenk, N. (1970). Solutions to axon equations. Biophys. J. 10 1090–1101.
  • [7] Evans, L. C. (1998). Partial Differential Equations. Amer. Math. Soc., Providence, RI.
  • [8] Faisal, A. A., White, J. A. and Laughlin, S. B. (2005). Ion-channel noise places limits on the miniaturization of the brain’s wiring. Current Biology 15 1143–1149.
  • [9] Fox, R. F. and Lu, Y. (1994). Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Physical Review E 49 3421–3431.
  • [10] Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems, 2nd ed. Springer, New York.
  • [11] Hille, B. (2001). Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland.
  • [12] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conductation and excitation in nerve. J. Physiol. 117 500–544.
  • [13] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.
  • [14] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [15] Kurtz, T. G. (1981). Approximation of Population Processes. SIAM, Philadelphia.
  • [16] Lamberti, L. (1986). Solutions to the Hodgkin–Huxley equations. Appl. Math. Comput. 18 43–70.
  • [17] Steinmetz, P. N., Manwani, A. and Koch C. (2001). Variability and coding efficiency of noisy neural spike encoders. BioSystems 62 87–97.
  • [18] Tuckwell, H. C. (1989). Stochastic Processes in the Neurosciences. SIAM, Philadelphia.