Annals of Applied Probability

Central limit theorem for signal-to-interference ratio of reduced rank linear receiver

G. M. Pan and W. Zhou

Full-text: Open access

Abstract

Let $\mathbf{s}_{k}=\frac{1}{\sqrt{N}}(v_{1k},\ldots,v_{Nk})^{T}$, with {vik, i, k=1, …} independent and identically distributed complex random variables. Write Sk=(s1, …, sk−1, sk+1, …, sK), Pk=diag(p1, …, pk−1, pk+1, …, pK), Rk=(SkPkSk*+σ2I) and Akm=[sk, Rksk, …, Rkm−1sk]. Define βkm=pksk*Akm(Akm*×RkAkm)−1Akm*sk, referred to as the signal-to-interference ratio (SIR) of user k under the multistage Wiener (MSW) receiver in a wireless communication system. It is proved that the output SIR under the MSW and the mutual information statistic under the matched filter (MF) are both asymptotic Gaussian when N/Kc>0. Moreover, we provide a central limit theorem for linear spectral statistics of eigenvalues and eigenvectors of sample covariance matrices, which is a supplement of Theorem 2 in Bai, Miao and Pan [Ann. Probab. 35 (2007) 1532–1572]. And we also improve Theorem 1.1 in Bai and Silverstein [Ann. Probab. 32 (2004) 553–605].

Article information

Source
Ann. Appl. Probab., Volume 18, Number 3 (2008), 1232-1270.

Dates
First available in Project Euclid: 26 May 2008

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1211819800

Digital Object Identifier
doi:10.1214/07-AAP477

Mathematical Reviews number (MathSciNet)
MR2418244

Zentralblatt MATH identifier
1153.15315

Subjects
Primary: 15A52 62P30: Applications in engineering and industry
Secondary: 60F05: Central limit and other weak theorems 62E20: Asymptotic distribution theory

Keywords
Random quadratic forms SIR random matrices empirical distribution Stieltjes transform central limit theorem

Citation

Pan, G. M.; Zhou, W. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 (2008), no. 3, 1232--1270. doi:10.1214/07-AAP477. https://projecteuclid.org/euclid.aoap/1211819800


Export citation

References

  • [1] Anderson, G. W. and Zeitouni, O. (2006). A CLT for a band matrix model. Probab. Theory Related Fields 134 283–338.
  • [2] Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices. A review (with discussion). Statist. Sinica 9 611–677.
  • [3] Bai, Z. D. and Silverstein, J. W. (2004). CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab. 32 553–605.
  • [4] Bai, Z. D. and Silverstein, J. W. (2007). On the signal-to-interference ratio of CDMA systems in wireless communication. Ann. Appl. Probab. 17 81–101.
  • [5] Bai, Z. D., Miao, B. Q. and Pan, G. M. (2007). On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 1532–1572.
  • [6] Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1–38.
  • [7] Goldstein, J. S., Reed, I. S. and Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. Inform. Theory 44 2943–2959.
  • [8] Götze, F. and Tikhomirov, A. (2002). Asymptotic distribution of quadratic forms and applications. J. Theoret. Probab. 15 424–475.
  • [9] Grant, A. J. and Alexander, P. D. (1996). Randomly selected spreading sequences for coded CDMA. In Proc. IEEE ISSSTA 1 54–57. Mainze, Germany.
  • [10] Honig, M. L. and Xiao, W. M. (2001). Performance of reduced-rank linear interference suppression. IEEE Trans. Inform. Theory 47 1928–1946.
  • [11] Honig, M. L. and Xiao, W. M. (2003). Performance of reduced-rank interference suppression: Reflections and open problems. IEEE Information Theory Society Newsletter 53 7–9.
  • [12] Pan, G. M., Guo, M., H. and Zhou, W. (2007). Asymptotic distributions of the signal-to-interference ratios of LMMSE detection in multiuser communications. Ann. Appl. Probab. 17 181–206.
  • [13] Silverstein, J. W. (1989). On the eigenvectors of large dimensional sample covariance matrices. J. Multivariate Anal. 30 1–16.
  • [14] Silverstein, J. W. (1990). Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 1174–1194.
  • [15] Silverstein, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivariate Anal. 55 331–339.
  • [16] Tse, D. and Hanly, S. (1999). Linear multiuser receivers: Effective interference effective bandwidth and capacity. IEEE Trans. Inform. Theory 45 641–657.
  • [17] Tse, D. and Zeitouni, O. (2000). Linear multiuser receivers in random environments. IEEE Trans. Inform. Theory 46 171–188.
  • [18] Tulino, A. M. and Verdú, S. (2004). Random matrix theory and wireless communications. Foundations and Trends in Communications and Information Theory 1 1–182.
  • [19] Verdú, S. (1998). Multiuser Detection. Cambridge Univ. Press.
  • [20] Verdú, S. and Shamai, S. (1999). Spectral efficiency of CDMA with random spreading. IEEE Trans. Inform. Theory 45 622–640.