The Annals of Applied Probability

A filtering approach to tracking volatility from prices observed at random times

Jakša Cvitanić, Robert Liptser, and Boris Rozovskii

Full-text: Open access

Abstract

This paper is concerned with nonlinear filtering of the coefficients in asset price models with stochastic volatility. More specifically, we assume that the asset price process S=(St)t≥0 is given by

dSt=m(θt)Stdt+v(θt)StdBt,

where B=(Bt)t≥0 is a Brownian motion, v is a positive function and θ=(θt)t≥0 is a cádlág strong Markov process. The random process θ is unobservable. We assume also that the asset price St is observed only at random times 0<τ1<τ2<⋯. This is an appropriate assumption when modeling high frequency financial data (e.g., tick-by-tick stock prices).

In the above setting the problem of estimation of θ can be approached as a special nonlinear filtering problem with measurements generated by a multivariate point process (τk, log Sτk). While quite natural, this problem does not fit into the “standard” diffusion or simple point process filtering frameworks and requires more technical tools. We derive a closed form optimal recursive Bayesian filter for θt, based on the observations of (τk, log Sτk)k≥1. It turns out that the filter is given by a recursive system that involves only deterministic Kolmogorov-type equations, which should make the numerical implementation relatively easy.

Article information

Source
Ann. Appl. Probab., Volume 16, Number 3 (2006), 1633-1652.

Dates
First available in Project Euclid: 2 October 2006

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1159804994

Digital Object Identifier
doi:10.1214/105051606000000222

Mathematical Reviews number (MathSciNet)
MR2260076

Zentralblatt MATH identifier
1108.62108

Subjects
Primary: 60G35: Signal detection and filtering [See also 62M20, 93E10, 93E11, 94Axx] 91B28
Secondary: 62M20: Prediction [See also 60G25]; filtering [See also 60G35, 93E10, 93E11] 93E11: Filtering [See also 60G35]

Keywords
Nonlinear filtering discrete observations volatility estimation

Citation

Cvitanić, Jakša; Liptser, Robert; Rozovskii, Boris. A filtering approach to tracking volatility from prices observed at random times. Ann. Appl. Probab. 16 (2006), no. 3, 1633--1652. doi:10.1214/105051606000000222. https://projecteuclid.org/euclid.aoap/1159804994


Export citation

References

  • Cvitanić, J., Rozovskii, B. and Zaliapin, Il. (2006). Numerical estimation of volatility values from discretely observed diffusion data. Journal of Computational Finance. To appear.
  • Elliott, R. J., Hunter, W. C. and Jamieson, B. M. (1998). Drift and volatility estimation in discrete time. J. Econom. Dynam. Control 22 209--218.
  • Fouque, J.-P., Papanicolaou, G. and Sircar, R. (2000). Derivatives in Financial Markets with Stochastic Volatility. Cambridge Univ. Press.
  • Frey, R. (1997). Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Quarterly 10 1--34.
  • Frey, R. and Runggaldier, W. (2001). A nonlinear filtering approach to volatility estimation with a view towards high frequency data. Internat. J. Theoret. Appl. Finance 4 199--210.
  • Gallant, A. R. and Tauchen, G. (1998). Reprojecting partially observed systems with application to interest rate diffusions. J. Amer. Statist. Assoc. 93 10--24.
  • Gourieroux, C. (1997). ARCH Models and Financial Applications. Springer, New York.
  • Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.
  • Kallianpur, G. and Striebel, C. (1969). Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Teor. Veroyatnost. i Primenen. 14 597--622.
  • Kallianpur, G. and Xiong, J. (2001). Asset pricing with stochastic volatility. Appl. Math. Optim. 43 47--62.
  • Krein, S. G. (1982). Linear Equations in Banach Spaces. Birkhäuser, Boston.
  • Krylov, N. V. and Zatezalo, A. (2000). Filtering of finite-state time-non homogeneous Markov processes, a direct approach. Appl. Math. Optim. 42 229--258.
  • Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line: A Dynamic Approach. Springer, New York.
  • Lions, J.-L. and Magenes, E. (1968). Problèmes aux Limites Non Homogènes et Applications. Dunod, Paris.
  • Liptser, R. S. and Shiryaev, A. N. (2000). Statistics of Random Processes II. Applications. Springer, New York.
  • Liptser, R. S. and Shiryayev, A. N. (1989). Theory of Martingales. Kluwer Acad. Publ., Dordrecht.
  • Malliavin, P. and Mancino, M. E. (2002). Fourier series method for measurement of multivariate volatilities. Finance and Stochastics 6 49--62.
  • Mikulevicius, R. and Pragarauskas, H. (1992). On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Lithuanian Math. J. 32 238--263.
  • Rogers, L. C. G. and Zane, O. (1998). Designing and estimating models of high-frequency data. Preprint.
  • Rozovskii, B. L. (1990). Stochastic Evolution Systems. Linear Theory and Applications to Non-Linear Filtering. Kluwer Acad. Publ., Dordrecht.
  • Rozovskii, B.L. (1991). A simple proof of uniqueness for Kushner and Zakai equations. In Stochastic Analysis (E. Mayer-Wolf et al., eds.) 449--458. Academic Press, Boston.
  • Runggaldier, W. J. (2004). Estimation via stochastic filtering in financial market models. In Mathematics of Finance (G. Yin and Q. Zhang, eds.) 309--318. Amer. Math. Soc., Providence, RI.