The Annals of Applied Probability

On approximate pattern matching for a class of Gibbs random fields

Jean-Rene Chazottes, Frank Redig, and Evgeny Verbitskiy

Full-text: Open access

Abstract

We prove an exponential approximation for the law of approximate occurrence of typical patterns for a class of Gibssian sources on the lattice ℤd, d≥2. From this result, we deduce a law of large numbers and a large deviation result for the waiting time of distorted patterns.

Article information

Source
Ann. Appl. Probab., Volume 16, Number 2 (2006), 670-684.

Dates
First available in Project Euclid: 29 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1151592247

Digital Object Identifier
doi:10.1214/105051605000000827

Mathematical Reviews number (MathSciNet)
MR2244429

Zentralblatt MATH identifier
1131.60046

Subjects
Primary: 60G60: Random fields
Secondary: 60F05: Central limit and other weak theorems 60F10: Large deviations 94A08: Image processing (compression, reconstruction, etc.) [See also 68U10] 94A34: Rate-distortion theory

Keywords
Hitting time exponential law large deviations rate distortion

Citation

Chazottes, Jean-Rene; Redig, Frank; Verbitskiy, Evgeny. On approximate pattern matching for a class of Gibbs random fields. Ann. Appl. Probab. 16 (2006), no. 2, 670--684. doi:10.1214/105051605000000827. https://projecteuclid.org/euclid.aoap/1151592247


Export citation

References

  • Abadi, M., Chazottes, J.-R., Redig, F. and Verbitskiy, E. A. (2004). Exponential distribution for the occurrence of rare patterns in Gibbsian random fields. Comm. Math. Phys. 246 269–294.
  • Alzina, M., Szpankowski, W. and Grama, A. (2002). 2D-pattern matching image and video compression: Theory, algorithms, and experiments. IEEE Trans. Image Process. 11 318–331.
  • Berger, T. (1971). Rate Distortion Theory. Prentice–Hall, Englewood Cliffs, NJ.
  • Chi, Z. (2002). Conditional large deviation principle for finite state Gibbs random fields. Preprint.
  • Dembo, A. and Kontoyiannis, I. (1999). The asymptotics of waiting times between stationary processes, allowing distortion. Ann. Appl. Probab. 9 413–429.
  • Dembo, A. and Kontoyiannis, I. (2002). Source coding, large deviations, and approximate pattern matching. IEEE Trans. Inform. Theory 48 1590–1615.
  • Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications. Springer, New York.
  • Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin.
  • Guyon, X. (1995). Random Fields on a Network. Springer, New York.
  • Kontoyiannis, I. (2003). Pattern matching and lossy data compression on random fields. IEEE Trans. Inform. Theory 49 1047–1051.
  • Łuczak, T. and Szpankowski, W. (1997). A suboptimal lossy data compression based on approximate pattern matching. IEEE Trans. Inform. Theory 43 1439–1451.
  • Révész, P. (1990). Random Walks in Random and Non-Random Environments. World Scientific, Singapore.