Annals of Applied Probability

The stepping stone model. II: Genealogies and the infinite sites model

Iljana Zähle, J. Theodore Cox, and Richard Durrett

Full-text: Open access


This paper extends earlier work by Cox and Durrett, who studied the coalescence times for two lineages in the stepping stone model on the two-dimensional torus. We show that the genealogy of a sample of size n is given by a time change of Kingman’s coalescent. With DNA sequence data in mind, we investigate mutation patterns under the infinite sites model, which assumes that each mutation occurs at a new site. Our results suggest that the spatial structure of the human population contributes to the haplotype structure and a slower than expected decay of genetic correlation with distance revealed by recent studies of the human genome.

Article information

Ann. Appl. Probab., Volume 15, Number 1B (2005), 671-699.

First available in Project Euclid: 1 February 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 92D10: Genetics {For genetic algebras, see 17D92}

Voter model stepping stone model genealogy recombination linkage disequilibrium haplotype structure


Zähle, Iljana; Cox, J. Theodore; Durrett, Richard. The stepping stone model. II: Genealogies and the infinite sites model. Ann. Appl. Probab. 15 (2005), no. 1B, 671--699. doi:10.1214/105051604000000701.

Export citation


  • Ardlie, K. G., Kruglyak, L. and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3 299–309.
  • Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.
  • Cox, J. T. (1989). Coalescing random walks and voter model consensus times on the torus in $\sint^d$. Ann. Probab. 17 1333–1366.
  • Cox, J. T. and Durrett, R. (2002). The stepping stone model: New formulas expose old myths. Ann. Appl. Probab. 12 1348–1377.
  • Cox, J. T. and Griffeath, D. (1986). Diffusive clustering in the two dimensional voter model. Ann. Probab. 14 347–370.
  • Dawson, E. et al. (2002). A first generation linkage disequilibrium map of human chromosome 22. Nature 418 544–548.
  • Durrett, R. (2002). Probability Models for DNA Sequence Evolution. Springer, New York.
  • Jin, L. et al. (1999). Distributions of haplotypes from a chromosome 21 region distinguishes multiple prehistoric human migrations. Proc. Natl. Acad. Sci. U.S.A. 96 3796–3800.
  • Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics 22 139–144.
  • McVean, G. A. T. (2002). A genealogical interpretation of linkage disequilibrium. Genetics 162 987–991.
  • Nordborg, M. and Tavaré, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics 18 83–90.
  • Ohta, T. and Kimura, M. (1971). Linkage disequilibrium between two segregating nucleotide sites under the steady flux of mutations in a finite population. Genetics 68 571–580.
  • Patil, N. et al. (2001). Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294 1719–1723.
  • Pritchard, J. K. and Przeworksi, M. (2001). Linkage disequilibrium in humans: Models and data. American Journal of Human Genetics 69 1–14.
  • Reich, D. E. et al. (2001). Linkage disequilibrium in the human genome. Nature 411 199–204.
  • Sabeti, P. C. et al. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature 419 832–837.
  • Zähle, I. (2002). Renormalizations of branching random walks in equilibrium. Electron. J. Probab. 7 1–57.