Annals of Applied Probability

Existence of quasi-stationary measures for asymmetric attractive particle systems on $\ZZ^d$

Amine Asselah and Fabienne Castell

Full-text: Open access

Abstract

We show the existence of nontrivial quasi-stationary measures for conservative attractive particle systems on $\ZZ^d$ conditioned on avoiding an increasing local set $\A$. Moreover, we exhibit a sequence of measures $\{\nu_n\}$, whose $\omega$-limit set consists of quasi-stationary measures. For zero-range processes, with stationary measure $\nur$, we prove the existence of an $L^2(\nur)$ nonnegative eigenvector for the generator with Dirichlet boundary on $\A$, after establishing a priori bounds on the $\{\nu_n\}$.

Article information

Source
Ann. Appl. Probab., Volume 13, Number 4 (2003), 1569-1590.

Dates
First available in Project Euclid: 25 November 2003

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1069786511

Digital Object Identifier
doi:10.1214/aoap/1069786511

Mathematical Reviews number (MathSciNet)
MR2023889

Zentralblatt MATH identifier
1079.60075

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35] 60J25: Continuous-time Markov processes on general state spaces

Keywords
Quasi-stationary measures hitting time Yaglom limit

Citation

Asselah, Amine; Castell, Fabienne. Existence of quasi-stationary measures for asymmetric attractive particle systems on $\ZZ^d$. Ann. Appl. Probab. 13 (2003), no. 4, 1569--1590. doi:10.1214/aoap/1069786511. https://projecteuclid.org/euclid.aoap/1069786511


Export citation

References

  • Andjel, E. (1982). Invariant measures for the zero range process. Ann. Probab. 10 525--547.
  • Arratia, R. (1985). Symmetric exclusion processes: A comparison inequality and a large deviation result. Ann. Probab. 13 53--61.
  • Asselah, A. and Dai Pra, P. (2000). First occurrence time of a large density fluctuation for a system of independent random walks. Ann. Inst. H. Poincaré Probab. Statist. 36 367--393.
  • Asselah, A. and Dai Pra, P. (2001). Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Probab. 29 1733--1754.
  • Asselah, A. and Ferrari, P. (2003). Regularity of quasi-stationary measures for SSEP in $d\ge 5$. Ann. Probab. To appear.
  • Bahadoran, C. (1997). Hydrodynamique des processus misanthropes spatialement hétérogènes. Thesis, Ecole Polytechnique.
  • Cocozza-Thivent, C. (1985). Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 509--523.
  • Collet, P., Martínez, S. and Maume-Deschamps, V. (2000). On the existence of conditionally invariant probability measures in dynamical systems. Nonlinearity 13 1263--1274.
  • Collet, P., Martínez, S. and San Martín, J. (1999). Ratio limit theorems for a Brownian motion killed at the boundary of a Benedicks domain. Ann. Probab. 27 1160--1182.
  • Donsker, M. D. and Varadhan, S. R. S. (1976). On the principal eigenvalue of second-order elliptic differential operators. Commun. Pure Appl. Math. 29 595--621.
  • Ferrari, P. A., Kesten, H. and Martínez, S. (1996). $R$-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata. Ann. Appl. Probab. 6 577--616.
  • Ferrari, P. A., Kesten, H., Martínez, S. and Picco, P. (1995). Existence of quasi-stationary distributions: A renewal dynamical approach. Ann. Probab. 23 501--521.
  • Kesten, H. (1995). A ratio limit theorem for (sub) Markov chains on $\1,2,\ldots\$ with bounded jumps. Adv. in Appl. Probab. 27 652--691.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Pianigiani, G. and Yorke, J. A. (1979). Expanding maps on sets which are almost invariant: Decay and chaos. Trans. Amer. Math. Soc. 252 351--366.
  • Rezakhanlou, F. (1994). Propagation of chaos for symmetric simple exclusions. Comm. Pure Appl. Math. 47 943--957.
  • Sethuraman, S. (2001). On extremal measures for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist. 37 139--154.
  • Yaglom, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Dokl. Akad. Nauk SSSR 56 797--798.