The Annals of Applied Probability

Stochastic interacting particle systems and nonlinear kinetic equations

Andreas Eibeck and Wolfgang Wagner

Full-text: Open access

Abstract

We present the stochastic approach to nonlinear kinetic equations (without gradient terms) in a unifying general framework, which covers many interactions important in applications, such as coagulation, fragmentation, inelastic collisions, as well as source and efflux terms. We provide conditions for the existence of corresponding stochastic particle systems in the sense of regularity (nonexplosion) of a jump process with unbounded intensity. Using an appropriate space of measure-valued functions, we prove relative compactness of the sequence of processes and characterize the weak limits in terms of solutions to the nonlinear equation. As a particular application, we derive existence theorems for Smoluchowski's coagulation equation with fragmentation, efflux and source terms, and for the Boltzmann equation with inelastic collisions.

Article information

Source
Ann. Appl. Probab., Volume 13, Number 3 (2003), 845-889.

Dates
First available in Project Euclid: 6 August 2003

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1060202829

Digital Object Identifier
doi:10.1214/aoap/1060202829

Mathematical Reviews number (MathSciNet)
MR1994039

Zentralblatt MATH identifier
1045.60104

Subjects
Primary: 60K40: Other physical applications of random processes 65C35: Stochastic particle methods [See also 82C80]

Keywords
Stochastic particle systems regularity of jump processes kinetic equations existence of solutions coagulation fragmentation source and efflux dissipative collisions

Citation

Eibeck, Andreas; Wagner, Wolfgang. Stochastic interacting particle systems and nonlinear kinetic equations. Ann. Appl. Probab. 13 (2003), no. 3, 845--889. doi:10.1214/aoap/1060202829. https://projecteuclid.org/euclid.aoap/1060202829


Export citation

References

  • [1] ALDOUS, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3-48.
  • [2] BAUER, H. (1978). Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie. de Gruy ter, Berlin.
  • [3] BAUER, H. (1990). Massund Integrationstheorie. de Gruy ter, Berlin.
  • [4] BENEDETTO, D., CAGLIOTI, E. and PULVIRENTI, M. (2000). Collective behavior of onedimensional granular media. In Modeling in Applied Sciences: A Kinetic Theory Approach (N. Bellomo and M. Pulvirenti, eds.) 81-110. Birkhäuser, Boston.
  • [5] BIRD, G. A. (1994). Molecular Gas Dy namics and the Direct Simulation of Gas Flows. Clarendon, Oxford.
  • [6] BOLTZMANN, L. (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsber. Akad. Wiss. Wien 66 275-370.
  • [7] CERCIGNANI, C. (1988). The Boltzmann Equation and Its Applications. Springer, New York.
  • [8] DRAKE, R. L. (1972). A general mathematical survey of the coagulation equation. In Topics in Current Aerosol Research (Part 2) (G. Hidy and J. Brock, eds.) 201-376. Pergamon, Oxford.
  • [9] DUBOVSKII, P. B. (1994). Mathematical Theory of Coagulation. Lecture Notes Series 23. Seoul National University Research Institute of Mathematics Global Analy sis Research Center, Seoul.
  • [10] EIBECK, A. and WAGNER, W. (2000). An efficient stochastic algorithm for studying coagulation dy namics and gelation phenomena. SIAM J. Sci. Comput. 22 802-821.
  • [11] EIBECK, A. and WAGNER, W. (2000). Approximative solution of the coagulation- fragmentation equation by stochastic particle sy stems. Stochastic Anal. Appl. 18 921-948.
  • [12] EIBECK, A. and WAGNER, W. (2001). Stochastic particle approximations for Smoluchowski's coagulation equation. Ann. Appl. Probab. 11 1137-1165.
  • [13] ETHIER, S. N. and KURTZ, T. G. (1986) Markov Processes, Characterization and Convergence. Wiley, New York.
  • [14] GILLESPIE, D. T. (1972). The stochastic coalescence model for cloud droplet growth. J. Atmospheric Sci. 29 1496-1510.
  • [15] GILLESPIE, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phy s. 22 403-434.
  • [16] GOLDHIRSCH, I. (2000). Rapid granular flows: Kinetics and hy drody namics. In Modeling in Applied Sciences: A Kinetic Theory Approach (N. Bellomo and M. Pulvirenti, eds.) 21-79. Birkhäuser, Boston.
  • [17] GRAHAM, C. and MÉLÉARD, S. (1997). Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25 115-132.
  • [18] GUIA ¸S, F. (1997). A Monte Carlo approach to the Smoluchowski equations. Monte Carlo Methods Appl. 3 313-326.
  • [19] JEON, I. (1998). Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phy s. 194 541-567.
  • [20] KAC, M. (1956). Foundations of kinetic theory. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 3 171-197. Univ. California Press.
  • [21] KURTZ, T. G. (1972). The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phy s. 57 2976-2978.
  • [22] LEONTOVICH, M. A. (1935). Basic equations of the kinetic gas theory from the point of view of the theory of random processes (in Russian). Zh. Teoret. Ehksper. Fiz. 5 211-231.
  • [23] LUSHNIKOV, A. A. (1978). Certain new aspects of the coagulation theory. Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 14 738-743.
  • [24] MARCUS, A. H. (1968). Stochastic coalescence. Technometrics 10 133-148.
  • [25] MCKEAN, H. P. (1966). Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal. 21 343-367.
  • [26] NEKRUTKIN, V. V. and TUR, N. I. (1989). On the justification of a scheme of direct modelling of flows of rarefied gases (in Russian). Zh. Vy chisl. Mat. i Mat. Fiz. 29 1380-1392.
  • [27] NORRIS, J. R. (1998). Markov Chains. Cambridge Univ. Press.
  • [28] NORRIS, J. R. (1999). Smoluchowski's coagulation equation: Uniqueness, nonuniqueness and a hy drody namic limit for the stochastic coalescent. Ann. Appl. Probab. 9 78-109.
  • [29] NORRIS, J. R. (2000). Cluster coagulation. Comm. Math. Phy s. 209 407-435.
  • [30] SPOUGE, J. L. (1985). An existence theorem for the discrete coagulation-fragmentation equations II. Inclusion of source and efflux terms. Math. Proc. Cambridge Philos. Soc. 98 183-185.
  • [31] SZNITMAN, A. S. (1984). Équations de ty pe de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66 559-592.
  • [32] TANAKA, H. (1978). Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46 67-105.
  • [33] TOSCANI, G. (2000). One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer. Anal. 34 1277-1291.
  • [34] VON SMOLUCHOWSKI, M. (1916). Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phy s. Z. 17 557-571, 585-599.
  • [35] WAGNER, W. (1996). A functional law of large numbers for Boltzmann ty pe stochastic particle sy stems. Stochastic Anal. Appl. 14 591-636.
  • [36] WILLIAMS, M. M. R. and LOy ALKA, S. K. (1991). Aerosol Science. Theory and Practice. Pergamon, New York.